YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermomechanical Soil–Structure Interaction in Single Energy Piles Exhibiting Reversible Interface Behavior

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 005::page 04021065-1
    Author:
    Arash Saeidi Rashk Olia
    ,
    Dunja Perić
    DOI: 10.1061/(ASCE)GM.1943-5622.0002014
    Publisher: ASCE
    Abstract: Analytical solutions for displacement, strain, and stress in a single energy pile provide rational, mechanics-based qualitative and quantitative understanding of thermomechanical load transfer mechanism in energy piles. To this end, thermomechanically induced axial displacement, strain, and stress evolutions are derived for different tip restraints and for several different loading scenarios including net heating, net cooling, and compressive and tensile mechanical loads. In addition, the analytical solutions are successfully validated against centrifuge test results. The analytical solution for the location of a thermal null point indicates that it depends on the geometry and stiffness of the pile, stiffness of the soil, and amount of head and tip restraints. In addition, the thermal null point moves upward into the top half of the pile with increase in the ratio between the amounts of head and tip restraints. It is also found that formation of a tension zone in energy piles is likely for several different load scenarios. At a constant mechanical load, the length of a tension zone depends on the geometry of the pile, ratio of the soil and pile stiffness, and the magnitude of thermal load. An increased magnitude of a net cooling combined with a constant compressive axial force increases the length of a tension zone and magnitude of tensile stress in the pile. On the contrary, the length of a tension zone and magnitude of tensile stress decrease with the increase in magnitude of heating at a constant tensile axial force. In summary, the analytical solutions and their features presented herein provide a fundamental, rational, mechanics-based framework for advancing the understanding of a load transfer mechanism and soil structure interaction in energy piles, thus contributing directly toward their safer design and wider use, and increased sustainability of civil engineering infrastructure.
    • Download: (1.748Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermomechanical Soil–Structure Interaction in Single Energy Piles Exhibiting Reversible Interface Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271358
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorArash Saeidi Rashk Olia
    contributor authorDunja Perić
    date accessioned2022-02-01T00:23:14Z
    date available2022-02-01T00:23:14Z
    date issued5/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271358
    description abstractAnalytical solutions for displacement, strain, and stress in a single energy pile provide rational, mechanics-based qualitative and quantitative understanding of thermomechanical load transfer mechanism in energy piles. To this end, thermomechanically induced axial displacement, strain, and stress evolutions are derived for different tip restraints and for several different loading scenarios including net heating, net cooling, and compressive and tensile mechanical loads. In addition, the analytical solutions are successfully validated against centrifuge test results. The analytical solution for the location of a thermal null point indicates that it depends on the geometry and stiffness of the pile, stiffness of the soil, and amount of head and tip restraints. In addition, the thermal null point moves upward into the top half of the pile with increase in the ratio between the amounts of head and tip restraints. It is also found that formation of a tension zone in energy piles is likely for several different load scenarios. At a constant mechanical load, the length of a tension zone depends on the geometry of the pile, ratio of the soil and pile stiffness, and the magnitude of thermal load. An increased magnitude of a net cooling combined with a constant compressive axial force increases the length of a tension zone and magnitude of tensile stress in the pile. On the contrary, the length of a tension zone and magnitude of tensile stress decrease with the increase in magnitude of heating at a constant tensile axial force. In summary, the analytical solutions and their features presented herein provide a fundamental, rational, mechanics-based framework for advancing the understanding of a load transfer mechanism and soil structure interaction in energy piles, thus contributing directly toward their safer design and wider use, and increased sustainability of civil engineering infrastructure.
    publisherASCE
    titleThermomechanical Soil–Structure Interaction in Single Energy Piles Exhibiting Reversible Interface Behavior
    typeJournal Paper
    journal volume21
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002014
    journal fristpage04021065-1
    journal lastpage04021065-17
    page17
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian