YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adaptive Backstepping Attitude Control for Liquid-Filled Spacecraft without Angular Velocity Measurement

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 003::page 04021021-1
    Author:
    Xiao Juan Song
    ,
    Hong Wei Wang
    ,
    Shu Feng Lu
    DOI: 10.1061/(ASCE)AS.1943-5525.0001254
    Publisher: ASCE
    Abstract: The attitude tracking form quaternion measurements for a three-axis stabilized liquid-filled spacecraft are studied under uncertain parametric and external disturbances. The sloshing liquid inside the partially filled liquid tank is equivalent to a spherical pendulum model; thus, coupled dynamic equations are derived using the conservation of moment of momentum. Considering the failure of acceleration sensors, when the angular velocity information cannot be obtained, an adaptive robust backstepping control algorithm is proposed by combining the adaptive backstepping control technique with a passive control algorithm. A nonlinear damping algorithm is introduced to enhance the disturbance attenuation ability and robustness performance against lumped disturbances. Globally uniformly ultimately bounded (GUUB) stability of the entire closed-loop system is guaranteed based on the Lyapunov approach. The comparative simulations show that the control strategy is robust and effective for the spacecraft attitude maneuvers.
    • Download: (1.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adaptive Backstepping Attitude Control for Liquid-Filled Spacecraft without Angular Velocity Measurement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271337
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorXiao Juan Song
    contributor authorHong Wei Wang
    contributor authorShu Feng Lu
    date accessioned2022-02-01T00:22:25Z
    date available2022-02-01T00:22:25Z
    date issued5/1/2021
    identifier other%28ASCE%29AS.1943-5525.0001254.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271337
    description abstractThe attitude tracking form quaternion measurements for a three-axis stabilized liquid-filled spacecraft are studied under uncertain parametric and external disturbances. The sloshing liquid inside the partially filled liquid tank is equivalent to a spherical pendulum model; thus, coupled dynamic equations are derived using the conservation of moment of momentum. Considering the failure of acceleration sensors, when the angular velocity information cannot be obtained, an adaptive robust backstepping control algorithm is proposed by combining the adaptive backstepping control technique with a passive control algorithm. A nonlinear damping algorithm is introduced to enhance the disturbance attenuation ability and robustness performance against lumped disturbances. Globally uniformly ultimately bounded (GUUB) stability of the entire closed-loop system is guaranteed based on the Lyapunov approach. The comparative simulations show that the control strategy is robust and effective for the spacecraft attitude maneuvers.
    publisherASCE
    titleAdaptive Backstepping Attitude Control for Liquid-Filled Spacecraft without Angular Velocity Measurement
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001254
    journal fristpage04021021-1
    journal lastpage04021021-13
    page13
    treeJournal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian