YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Semianalytical Development of Dynamic Instability and Response of a Multiscale Laminated Hybrid Composite Plate

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 003::page 04021005-1
    Author:
    Vishal Singh
    ,
    Rajesh Kumar
    ,
    Varun Jain
    ,
    T. Naveen Kumar
    ,
    S. N. Patel
    DOI: 10.1061/(ASCE)AS.1943-5525.0001244
    Publisher: ASCE
    Abstract: The use of carbon nanotubes (CNTs) in augmenting the mechanical properties of fiber-reinforced laminated composites is a fact. In this paper, the semianalytical studies on the dynamic instability behavior and linear and nonlinear responses of a randomly distributed CNT and fiber-reinforced interlamina hybrid composite (CNTFRHC) plate with and without damping under time-dependent in-plane uniaxial uniform compression loading are presented. Each lamina of the laminate is made of multiscale materials such as CNT/polymer/fiber. The effective mechanical properties of the lamina are estimated in two steps. First, the Eshelby–Mori–Tanaka technique is used to compute the effective mechanical properties of randomly distributed CNTs in a polymer matrix (i.e., CNT-embedded matrix). Second, the effective mechanical properties of the CNT-embedded matrix reinforced with fiber (either carbon or glass) are estimated by using various homogenization techniques. The plate is modeled by using higher-order shear deformation theory (HSDT) and von Kármán nonlinearity. Governing partial differential equations of the CNTFRHC plate are obtained by Hamilton’s principle and reduced to Mathieu–Hill equations by using the Galerkin method. Mathieu–Hill equations are solved by the Bolotin method to trace the boundaries of the instability region corresponding periods T and 2T. Finally, the influence of different parameters such as CNT agglomerations, CNT mass fraction, edge-to-thickness ratio, compression preloading, boundary conditions, and damping on the dynamic instability region of the CNTFRHC plates are studied in detail. Numerical results provide useful insights into the selection of parameters with different combinations for the desired design of the CNTFRHC plate against instability. Furthermore, to know the characteristics of the instability region of a CNTFRHC plate such as the existence of beats, dependence on geometric nonlinearity, and forcing frequency for which the linear and nonlinear responses with and without damping in both stable and unstable regions are presented.
    • Download: (4.034Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Semianalytical Development of Dynamic Instability and Response of a Multiscale Laminated Hybrid Composite Plate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271237
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorVishal Singh
    contributor authorRajesh Kumar
    contributor authorVarun Jain
    contributor authorT. Naveen Kumar
    contributor authorS. N. Patel
    date accessioned2022-02-01T00:18:35Z
    date available2022-02-01T00:18:35Z
    date issued5/1/2021
    identifier other%28ASCE%29AS.1943-5525.0001244.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271237
    description abstractThe use of carbon nanotubes (CNTs) in augmenting the mechanical properties of fiber-reinforced laminated composites is a fact. In this paper, the semianalytical studies on the dynamic instability behavior and linear and nonlinear responses of a randomly distributed CNT and fiber-reinforced interlamina hybrid composite (CNTFRHC) plate with and without damping under time-dependent in-plane uniaxial uniform compression loading are presented. Each lamina of the laminate is made of multiscale materials such as CNT/polymer/fiber. The effective mechanical properties of the lamina are estimated in two steps. First, the Eshelby–Mori–Tanaka technique is used to compute the effective mechanical properties of randomly distributed CNTs in a polymer matrix (i.e., CNT-embedded matrix). Second, the effective mechanical properties of the CNT-embedded matrix reinforced with fiber (either carbon or glass) are estimated by using various homogenization techniques. The plate is modeled by using higher-order shear deformation theory (HSDT) and von Kármán nonlinearity. Governing partial differential equations of the CNTFRHC plate are obtained by Hamilton’s principle and reduced to Mathieu–Hill equations by using the Galerkin method. Mathieu–Hill equations are solved by the Bolotin method to trace the boundaries of the instability region corresponding periods T and 2T. Finally, the influence of different parameters such as CNT agglomerations, CNT mass fraction, edge-to-thickness ratio, compression preloading, boundary conditions, and damping on the dynamic instability region of the CNTFRHC plates are studied in detail. Numerical results provide useful insights into the selection of parameters with different combinations for the desired design of the CNTFRHC plate against instability. Furthermore, to know the characteristics of the instability region of a CNTFRHC plate such as the existence of beats, dependence on geometric nonlinearity, and forcing frequency for which the linear and nonlinear responses with and without damping in both stable and unstable regions are presented.
    publisherASCE
    titleSemianalytical Development of Dynamic Instability and Response of a Multiscale Laminated Hybrid Composite Plate
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001244
    journal fristpage04021005-1
    journal lastpage04021005-21
    page21
    treeJournal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian