YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accurate Response Sensitivity Analysis of a Thermomechanical Constitutive Model for Superelastic SMAs

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 147 ):;issue: 005::page 04021026-1
    Author:
    Quan Gu
    ,
    Ning Zhang
    ,
    Bin Wang
    ,
    Songye Zhu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001925
    Publisher: ASCE
    Abstract: Superelastic shape memory alloys (SMAs) have attracted considerable interest in the field of earthquake engineering recently due to their excellent self-centering and moderate energy dissipating capabilities. This unique feature provides promising solutions that can be used in the passive control of structures under strong earthquakes. However, the hysteresis properties of the SMAs have a great influence on the response of the structures. A prominent problem of most previous SMA constitutive models is that they do not consider the strain-rate-dependent effect, especially the mechanical behavior in the typical frequency range of interest for seismic applications. Moreover, the variability effect of the SMA’s hysteresis parameters on the performance in seismic applications is not addressed comprehensively. For this reason, it is important to explore the response sensitivity analysis of an improved SMA constitutive model and gain insight into the effects of various thermomechanical parameters. This paper presents an efficient and accurate sensitivity analysis method for the strain-rate-dependent model of SMAs based on the direct differentiation method (DDM). The constitutive model of SMAs involves three coupled quantities, i.e., stress, martensite fraction, and temperature. The model is expressed numerically using the first-order ordinary differential equations and is solved by the fourth-order Runge–Kutta method. Both the consistent tangent modulus and the stress sensitivity of the SMAs are derived and integrated into the DDM framework. The newly developed algorithms are implemented in a general nonlinear finite element analysis program, OpenSees, and are further verified by the time history analyses of a multi-story steel frame designed with SMA braces. The results demonstrate that the developed DDM-based sensitivity algorithm is accurate and efficient and can provide an excellent solution to the response sensitivity analysis of the thermomechanical strain-rate-dependent model of SMAs.
    • Download: (1.043Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accurate Response Sensitivity Analysis of a Thermomechanical Constitutive Model for Superelastic SMAs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271212
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorQuan Gu
    contributor authorNing Zhang
    contributor authorBin Wang
    contributor authorSongye Zhu
    date accessioned2022-02-01T00:17:35Z
    date available2022-02-01T00:17:35Z
    date issued5/1/2021
    identifier other%28ASCE%29EM.1943-7889.0001925.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271212
    description abstractSuperelastic shape memory alloys (SMAs) have attracted considerable interest in the field of earthquake engineering recently due to their excellent self-centering and moderate energy dissipating capabilities. This unique feature provides promising solutions that can be used in the passive control of structures under strong earthquakes. However, the hysteresis properties of the SMAs have a great influence on the response of the structures. A prominent problem of most previous SMA constitutive models is that they do not consider the strain-rate-dependent effect, especially the mechanical behavior in the typical frequency range of interest for seismic applications. Moreover, the variability effect of the SMA’s hysteresis parameters on the performance in seismic applications is not addressed comprehensively. For this reason, it is important to explore the response sensitivity analysis of an improved SMA constitutive model and gain insight into the effects of various thermomechanical parameters. This paper presents an efficient and accurate sensitivity analysis method for the strain-rate-dependent model of SMAs based on the direct differentiation method (DDM). The constitutive model of SMAs involves three coupled quantities, i.e., stress, martensite fraction, and temperature. The model is expressed numerically using the first-order ordinary differential equations and is solved by the fourth-order Runge–Kutta method. Both the consistent tangent modulus and the stress sensitivity of the SMAs are derived and integrated into the DDM framework. The newly developed algorithms are implemented in a general nonlinear finite element analysis program, OpenSees, and are further verified by the time history analyses of a multi-story steel frame designed with SMA braces. The results demonstrate that the developed DDM-based sensitivity algorithm is accurate and efficient and can provide an excellent solution to the response sensitivity analysis of the thermomechanical strain-rate-dependent model of SMAs.
    publisherASCE
    titleAccurate Response Sensitivity Analysis of a Thermomechanical Constitutive Model for Superelastic SMAs
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001925
    journal fristpage04021026-1
    journal lastpage04021026-13
    page13
    treeJournal of Engineering Mechanics:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian