YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 002::page 04020071-1
    Author:
    Bo Xiao
    ,
    Shih-Chung Kang
    DOI: 10.1061/(ASCE)CP.1943-5487.0000957
    Publisher: ASCE
    Abstract: Tracking construction machines in videos is a fundamental step in the automated surveillance of construction productivity, safety, and project progress. However, existing vision-based tracking methods are not able to achieve high tracking precision, robustness, and practical processing speed simultaneously. Occlusions and illumination variations on construction sites also prevent vision-based tracking methods from obtaining optimal tracking performance. To address these challenges, this research proposes a vision-based method, called construction machine tracker (CMT), to track multiple construction machines in videos. CMT consists of three main modules: detection, association, and assignment. The detection module detects construction machines using the deep learning algorithm YOLOv3 in each frame. Then the association module relates the detection results of two consecutive frames, and the assignment module produces the tracking results. In testing, CMT achieved 93.2% in multiple object tracking accuracy (MOTA) and 86.5% in multiple object tracking precision (MOTP) with a processing speed of 20.8 frames per second when tested on four construction videos. The proposed CMT was integrated into a framework of analyzing excavator productivity in earthmoving cycles and achieved 96.9% accuracy.
    • Download: (4.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271088
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorBo Xiao
    contributor authorShih-Chung Kang
    date accessioned2022-02-01T00:12:49Z
    date available2022-02-01T00:12:49Z
    date issued3/1/2021
    identifier other%28ASCE%29CP.1943-5487.0000957.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271088
    description abstractTracking construction machines in videos is a fundamental step in the automated surveillance of construction productivity, safety, and project progress. However, existing vision-based tracking methods are not able to achieve high tracking precision, robustness, and practical processing speed simultaneously. Occlusions and illumination variations on construction sites also prevent vision-based tracking methods from obtaining optimal tracking performance. To address these challenges, this research proposes a vision-based method, called construction machine tracker (CMT), to track multiple construction machines in videos. CMT consists of three main modules: detection, association, and assignment. The detection module detects construction machines using the deep learning algorithm YOLOv3 in each frame. Then the association module relates the detection results of two consecutive frames, and the assignment module produces the tracking results. In testing, CMT achieved 93.2% in multiple object tracking accuracy (MOTA) and 86.5% in multiple object tracking precision (MOTP) with a processing speed of 20.8 frames per second when tested on four construction videos. The proposed CMT was integrated into a framework of analyzing excavator productivity in earthmoving cycles and achieved 96.9% accuracy.
    publisherASCE
    titleVision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines
    typeJournal Paper
    journal volume35
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000957
    journal fristpage04020071-1
    journal lastpage04020071-18
    page18
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian