YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Social Media Mining for Understanding Traffic Safety Culture in Washington State Using Twitter Data

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 001::page 04020059-1
    Author:
    Mohhammad Sujon
    ,
    Fei Dai
    DOI: 10.1061/(ASCE)CP.1943-5487.0000943
    Publisher: ASCE
    Abstract: Traffic safety culture has emerged as a significant factor in support of the recognition of existing traffic safety policies and programs and as a contextual variable to describe high-risk behaviors of drivers. However, it is an arduous task to understand people’s beliefs and attitudes that collectively make up traffic safety-related influences. The growing acceptance of social media platforms such as Facebook and Twitter have spurred great interest in massive data collection and its use in conducting a comprehensive analysis of people’s viewpoints on a particular topic. This study applied social media mining to shed light on traffic safety culture in the state of Washington. To this end, the researchers collected traffic safety–related tweets over the past 4 years in Washington based on a set of keywords. After cleaning and reprocessing, the collected tweets were used in sentiment analysis using Linguistic Inquiry and Word Count (LIWC) to measure the public’s beliefs and attitudes toward the importance of traffic safety, possibility of zero fatalities, usefulness of traffic law enforcement, and six types of high-risk behaviors, including impaired driving, speeding, distracted driving, unrestrained vehicle occupants, teenage drivers, and older drivers. Next, the topic modeling technique was applied to discover important latent topics related to traffic safety culture. This research, which capitalizes on social media mining, overcomes the limitations of the conventional survey method, which are time-consuming and costly. The generated information may facilitate understanding of the barriers to preventing fatal traffic accidents in Washington and around the country and developing solutions to overcome them.
    • Download: (955.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Social Media Mining for Understanding Traffic Safety Culture in Washington State Using Twitter Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271078
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorMohhammad Sujon
    contributor authorFei Dai
    date accessioned2022-02-01T00:12:23Z
    date available2022-02-01T00:12:23Z
    date issued1/1/2021
    identifier other%28ASCE%29CP.1943-5487.0000943.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271078
    description abstractTraffic safety culture has emerged as a significant factor in support of the recognition of existing traffic safety policies and programs and as a contextual variable to describe high-risk behaviors of drivers. However, it is an arduous task to understand people’s beliefs and attitudes that collectively make up traffic safety-related influences. The growing acceptance of social media platforms such as Facebook and Twitter have spurred great interest in massive data collection and its use in conducting a comprehensive analysis of people’s viewpoints on a particular topic. This study applied social media mining to shed light on traffic safety culture in the state of Washington. To this end, the researchers collected traffic safety–related tweets over the past 4 years in Washington based on a set of keywords. After cleaning and reprocessing, the collected tweets were used in sentiment analysis using Linguistic Inquiry and Word Count (LIWC) to measure the public’s beliefs and attitudes toward the importance of traffic safety, possibility of zero fatalities, usefulness of traffic law enforcement, and six types of high-risk behaviors, including impaired driving, speeding, distracted driving, unrestrained vehicle occupants, teenage drivers, and older drivers. Next, the topic modeling technique was applied to discover important latent topics related to traffic safety culture. This research, which capitalizes on social media mining, overcomes the limitations of the conventional survey method, which are time-consuming and costly. The generated information may facilitate understanding of the barriers to preventing fatal traffic accidents in Washington and around the country and developing solutions to overcome them.
    publisherASCE
    titleSocial Media Mining for Understanding Traffic Safety Culture in Washington State Using Twitter Data
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000943
    journal fristpage04020059-1
    journal lastpage04020059-16
    page16
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian