YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Direct Strength Method for Web-Crippling Design of Pultruded GFRP Beams

    Source: Journal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 004::page 04021031-1
    Author:
    Lourenço Almeida-Fernandes
    ,
    Nuno Silvestre
    ,
    João R. Correia
    DOI: 10.1061/(ASCE)CC.1943-5614.0001142
    Publisher: ASCE
    Abstract: This paper proposes, for the first time, a design methodology against the web-crippling failure of pultruded glass fiber–reinforced polymer (GFRP) I-section beams, based on the direct strength method (DSM). This study took into consideration previous experimental and numerical data reported by the authors to calibrate the DSM expression. Approximate formulas were derived to estimate the web-buckling and web-crushing loads for beams under end two flange (ETF) and interior two flange (ITF) loading cases. Finite-element (FE) analyses were also performed to generate complementary data, particularly for higher levels of slenderness, providing a more robust basis for the calibration of the proposed design formulations. Both experimental and numerical results were very well approximated by unified DSM expressions, that fitted both ETF and ITF configurations simultaneously, for a significant variety of materials and section dimensions. Finally, the proposed DSM formula also provides an in-depth and important novelty by identifying the slenderness ranges for which the web-crippling failure is triggered by web crushing, web buckling, or an interaction thereof.
    • Download: (1.811Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Direct Strength Method for Web-Crippling Design of Pultruded GFRP Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270896
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorLourenço Almeida-Fernandes
    contributor authorNuno Silvestre
    contributor authorJoão R. Correia
    date accessioned2022-02-01T00:05:21Z
    date available2022-02-01T00:05:21Z
    date issued8/1/2021
    identifier other%28ASCE%29CC.1943-5614.0001142.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270896
    description abstractThis paper proposes, for the first time, a design methodology against the web-crippling failure of pultruded glass fiber–reinforced polymer (GFRP) I-section beams, based on the direct strength method (DSM). This study took into consideration previous experimental and numerical data reported by the authors to calibrate the DSM expression. Approximate formulas were derived to estimate the web-buckling and web-crushing loads for beams under end two flange (ETF) and interior two flange (ITF) loading cases. Finite-element (FE) analyses were also performed to generate complementary data, particularly for higher levels of slenderness, providing a more robust basis for the calibration of the proposed design formulations. Both experimental and numerical results were very well approximated by unified DSM expressions, that fitted both ETF and ITF configurations simultaneously, for a significant variety of materials and section dimensions. Finally, the proposed DSM formula also provides an in-depth and important novelty by identifying the slenderness ranges for which the web-crippling failure is triggered by web crushing, web buckling, or an interaction thereof.
    publisherASCE
    titleDirect Strength Method for Web-Crippling Design of Pultruded GFRP Beams
    typeJournal Paper
    journal volume25
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001142
    journal fristpage04021031-1
    journal lastpage04021031-13
    page13
    treeJournal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian