YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Temperature Fluctuation and Severe Environments on Durability of CFRP Strands

    Source: Journal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 004::page 04021034-1
    Author:
    Nabil F. Grace
    ,
    Mohamed E. Mohamed
    ,
    Mattew Chynoweth
    ,
    Noriaki Kose
    ,
    Mena Bebawy
    DOI: 10.1061/(ASCE)CC.1943-5614.0001140
    Publisher: ASCE
    Abstract: This paper will present the results from an experimental study to examine the effect of severe environmental conditions on the performance of carbon fiber–reinforced polymer (CFRP) prestressed concrete members. Six 4.8 m (16 ft) long decked bulb-T beams will be prestressed with CFRP strands and will be loaded at three different temperatures: hot, ambient, and cold. Subsequently, four of the CFRP-prestressed beams along with five unbonded stressed CFRP specimens will be subjected to 300 freeze–thaw cycles following ASTM C666. Residual strength after freeze–thaw exposure will be assessed by testing the prestressed beams to failure under a flexural loading configuration and the CFRP specimens through a uniaxial tensile test setup. The results show that due to the difference in the coefficient of thermal expansions for concrete and CFRP, the temperature change caused a fluctuation in the level of the prestressing force in the CFRP-prestressed beams. This fluctuation in the prestressing force should be estimated and implemented in the design of CFRP-prestressed beams that are exposed to temperature fluctuations during service, such as bridge beams. In addition, exposing the CFRP-prestressed beams to freeze–thaw cycles resulted in a reduction in their flexural strength of approximately 7.5%. The reduction in the strength was triggered by the deterioration in the concrete strength and a change in the mode of failure. However, the mechanical properties of CFRP strands were not adversely affected.
    • Download: (2.969Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Temperature Fluctuation and Severe Environments on Durability of CFRP Strands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270894
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorNabil F. Grace
    contributor authorMohamed E. Mohamed
    contributor authorMattew Chynoweth
    contributor authorNoriaki Kose
    contributor authorMena Bebawy
    date accessioned2022-02-01T00:05:18Z
    date available2022-02-01T00:05:18Z
    date issued8/1/2021
    identifier other%28ASCE%29CC.1943-5614.0001140.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270894
    description abstractThis paper will present the results from an experimental study to examine the effect of severe environmental conditions on the performance of carbon fiber–reinforced polymer (CFRP) prestressed concrete members. Six 4.8 m (16 ft) long decked bulb-T beams will be prestressed with CFRP strands and will be loaded at three different temperatures: hot, ambient, and cold. Subsequently, four of the CFRP-prestressed beams along with five unbonded stressed CFRP specimens will be subjected to 300 freeze–thaw cycles following ASTM C666. Residual strength after freeze–thaw exposure will be assessed by testing the prestressed beams to failure under a flexural loading configuration and the CFRP specimens through a uniaxial tensile test setup. The results show that due to the difference in the coefficient of thermal expansions for concrete and CFRP, the temperature change caused a fluctuation in the level of the prestressing force in the CFRP-prestressed beams. This fluctuation in the prestressing force should be estimated and implemented in the design of CFRP-prestressed beams that are exposed to temperature fluctuations during service, such as bridge beams. In addition, exposing the CFRP-prestressed beams to freeze–thaw cycles resulted in a reduction in their flexural strength of approximately 7.5%. The reduction in the strength was triggered by the deterioration in the concrete strength and a change in the mode of failure. However, the mechanical properties of CFRP strands were not adversely affected.
    publisherASCE
    titleEffect of Temperature Fluctuation and Severe Environments on Durability of CFRP Strands
    typeJournal Paper
    journal volume25
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001140
    journal fristpage04021034-1
    journal lastpage04021034-14
    page14
    treeJournal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian