YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Elevated Temperatures on the Mechanical Properties and Relaxation of CFRP Strands

    Source: Journal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 003::page 04021019-1
    Author:
    Nabil F. Grace
    ,
    Mohamed E. Mohamed
    ,
    Mattew Chynoweth
    ,
    Noriaki Kose
    ,
    Mena Bebawy
    DOI: 10.1061/(ASCE)CC.1943-5614.0001127
    Publisher: ASCE
    Abstract: Although prestressing carbon fiber–reinforced polymer (CFRP) strands outperform steel strands on different levels, such as strength and durability, their performance under elevated temperatures remains a susceptible design issue that requires careful evaluation. Moderate increase in the temperature of prestressing CFRP strands takes place during construction due to concrete curing. CFRP strands can also experience increase in temperature if the CFRP-prestressed structural element is subjected to fire during service. This paper addresses the effect of increasing the temperature on the strength of prestressing CFRP strands as well as the level of prestressing force. Two sets of CFRP strand specimens with two different diameters were prepared and evaluated for strength degradation triggered by the increase in temperature to 350°C (662°F). Two more sets of prestressed CFRP strands were evaluated for prestress loss due to increase in temperature to 204°C (400°F). The prestress loss due to temperature increase was verified by constructing and monitoring half-scale decked bulb T-beams prestressed with CFRP strands. Test results showed that tensile strength of CFRP specimens decreased with the increase in temperature. In addition, first heating cycle of prestressed CFRP strands led to a slight permanent strand relaxation and a corresponding prestress loss. Subsequent cycles of heating and cooling did not seem to generate additional relaxation of the strands as long as the temperature of the first cycle was not exceeded. Furthermore, CFRP specimens subjected to heating and cooling cycles showed no reduction in the strength when tested at ambient conditions afterwards.
    • Download: (2.484Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Elevated Temperatures on the Mechanical Properties and Relaxation of CFRP Strands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270879
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorNabil F. Grace
    contributor authorMohamed E. Mohamed
    contributor authorMattew Chynoweth
    contributor authorNoriaki Kose
    contributor authorMena Bebawy
    date accessioned2022-02-01T00:04:47Z
    date available2022-02-01T00:04:47Z
    date issued6/1/2021
    identifier other%28ASCE%29CC.1943-5614.0001127.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270879
    description abstractAlthough prestressing carbon fiber–reinforced polymer (CFRP) strands outperform steel strands on different levels, such as strength and durability, their performance under elevated temperatures remains a susceptible design issue that requires careful evaluation. Moderate increase in the temperature of prestressing CFRP strands takes place during construction due to concrete curing. CFRP strands can also experience increase in temperature if the CFRP-prestressed structural element is subjected to fire during service. This paper addresses the effect of increasing the temperature on the strength of prestressing CFRP strands as well as the level of prestressing force. Two sets of CFRP strand specimens with two different diameters were prepared and evaluated for strength degradation triggered by the increase in temperature to 350°C (662°F). Two more sets of prestressed CFRP strands were evaluated for prestress loss due to increase in temperature to 204°C (400°F). The prestress loss due to temperature increase was verified by constructing and monitoring half-scale decked bulb T-beams prestressed with CFRP strands. Test results showed that tensile strength of CFRP specimens decreased with the increase in temperature. In addition, first heating cycle of prestressed CFRP strands led to a slight permanent strand relaxation and a corresponding prestress loss. Subsequent cycles of heating and cooling did not seem to generate additional relaxation of the strands as long as the temperature of the first cycle was not exceeded. Furthermore, CFRP specimens subjected to heating and cooling cycles showed no reduction in the strength when tested at ambient conditions afterwards.
    publisherASCE
    titleEffect of Elevated Temperatures on the Mechanical Properties and Relaxation of CFRP Strands
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001127
    journal fristpage04021019-1
    journal lastpage04021019-13
    page13
    treeJournal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian