YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sources and Impacts of Uncertainty in Uncalibrated Bioretention Models Using SWMM 5.1.012

    Source: Journal of Sustainable Water in the Built Environment:;2021:;Volume ( 007 ):;issue: 003::page 04021006-1
    Author:
    Elizabeth Fassman-Beck
    ,
    Firas Saleh
    DOI: 10.1061/JSWBAY.0000944
    Publisher: ASCE
    Abstract: Using the USEPA’s Storm Water Management Model version 5.1.012 (SWMM), a case study of a street right-of-way bioretention system (ROWB) configured as a storage node is compared against SWMM’s Low Impact Development (LID) Controls for urban runoff retention, detention, and the timing of discharge. Through 12,000 one-year continuous simulations, single parameter perturbations and Monte-Carlo simulation of the uncalibrated models result in predicted annual runoff coefficients (representing stormwater retention) of 0.19–0.55 for an exfiltrating ROWB compared to 0.61 and 0.72 for a storage node with low and high assumed exfiltration capacity, respectively. Stormwater detention was represented by the frequency of event peak discharges exceeding an arbitrary low threshold value. The storage node simulations predicted peak discharges near or exceeding the upper values for the LID Control simulations. The dynamic representation of flow through porous media in the LID Control predicts greater retention and detention compared to the storage node over the range of uncalibrated models investigated. Sensitivity analysis of the LID Control parameterization indicates that the relative difference between the engineered media’s porosity and field capacity have the most significant influence on predicted performance. Poor runoff retention results in scenarios where the engineered media exhibits a high field capacity relative to its porosity, whereas high field capacity is a desirable trait that should lead to superior performance. The model’s calculation procedures and neglect of unsaturated flow or preferential pathways bias model output toward more frequent runoff bypass. The sensitivity analysis also demonstrates that the timing and duration of the discharge hydrograph are highly variable depending on parameterization. The wide range of potential performance generated from uncalibrated model parameterization leads to significant concerns for infrastructure planning and implementation, leading potentially to underperforming infrastructure, or excessive cost. Allocating resources to collect field performance data that enables robust model development, calibration, and verification at the green infrastructure (GI) stormwater control measure (SCM) scale offers the opportunity to reduce uncertainty in model predictions.
    • Download: (1.769Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sources and Impacts of Uncertainty in Uncalibrated Bioretention Models Using SWMM 5.1.012

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270787
    Collections
    • Journal of Sustainable Water in the Built Environment

    Show full item record

    contributor authorElizabeth Fassman-Beck
    contributor authorFiras Saleh
    date accessioned2022-02-01T00:02:07Z
    date available2022-02-01T00:02:07Z
    date issued8/1/2021
    identifier otherJSWBAY.0000944.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270787
    description abstractUsing the USEPA’s Storm Water Management Model version 5.1.012 (SWMM), a case study of a street right-of-way bioretention system (ROWB) configured as a storage node is compared against SWMM’s Low Impact Development (LID) Controls for urban runoff retention, detention, and the timing of discharge. Through 12,000 one-year continuous simulations, single parameter perturbations and Monte-Carlo simulation of the uncalibrated models result in predicted annual runoff coefficients (representing stormwater retention) of 0.19–0.55 for an exfiltrating ROWB compared to 0.61 and 0.72 for a storage node with low and high assumed exfiltration capacity, respectively. Stormwater detention was represented by the frequency of event peak discharges exceeding an arbitrary low threshold value. The storage node simulations predicted peak discharges near or exceeding the upper values for the LID Control simulations. The dynamic representation of flow through porous media in the LID Control predicts greater retention and detention compared to the storage node over the range of uncalibrated models investigated. Sensitivity analysis of the LID Control parameterization indicates that the relative difference between the engineered media’s porosity and field capacity have the most significant influence on predicted performance. Poor runoff retention results in scenarios where the engineered media exhibits a high field capacity relative to its porosity, whereas high field capacity is a desirable trait that should lead to superior performance. The model’s calculation procedures and neglect of unsaturated flow or preferential pathways bias model output toward more frequent runoff bypass. The sensitivity analysis also demonstrates that the timing and duration of the discharge hydrograph are highly variable depending on parameterization. The wide range of potential performance generated from uncalibrated model parameterization leads to significant concerns for infrastructure planning and implementation, leading potentially to underperforming infrastructure, or excessive cost. Allocating resources to collect field performance data that enables robust model development, calibration, and verification at the green infrastructure (GI) stormwater control measure (SCM) scale offers the opportunity to reduce uncertainty in model predictions.
    publisherASCE
    titleSources and Impacts of Uncertainty in Uncalibrated Bioretention Models Using SWMM 5.1.012
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Sustainable Water in the Built Environment
    identifier doi10.1061/JSWBAY.0000944
    journal fristpage04021006-1
    journal lastpage04021006-10
    page10
    treeJournal of Sustainable Water in the Built Environment:;2021:;Volume ( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian