YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave Propagation Approach for Elastic Transient Responses of Transversely Isotropic Asphalt Pavement under an Impact Load: A Semianalytical Solution

    Source: Journal of Transportation Engineering, Part B: Pavements:;2021:;Volume ( 147 ):;issue: 003::page 04021021-1
    Author:
    Zejiao Dong
    ,
    Weiwen Quan
    ,
    Xianyong Ma
    ,
    Liping Cao
    ,
    Hongliang Zhang
    ,
    Zhen Leng
    DOI: 10.1061/JPEODX.0000271
    Publisher: ASCE
    Abstract: The conventional transfer matrix method, adopted formerly in a semianalytical solution for layered elastic or viscoelastic asphalt pavement structures, has inherent deficiencies, such as ill-condition matrix, numerical overflow, and error accumulation, due to exponential items. This phenomenon is more evident in multilayered dynamic analysis with imperfect interfaces. Moreover, several studies revealed that pavement materials exhibit transverse isotropy in service. Consequently, a novel semianalytical solution methodology, wave propagation approach, was proposed herein to calculate the dynamic responses of asphalt pavement under an impact load considering the transversely isotropic material model and the imperfect interfaces. First, the transfer matrix was established based on matrix theory and wave propagation approach, while the relation between the state vector and wave vector in the transformed domain was constructed simultaneously. Then, combined with the boundary conditions and interface contact conditions, the solution of the wave vector in the transformed domain was derived. Finally, based on Laplace–Hankel inverse transform, the state vector in the time domain was obtained, followed by numerical computation with programming. The accuracy and efficiency of the proposed semianalytical solution, together with the influence regularities of several variables, were discussed. Results showed that due to the absence of positive exponential functions and a large-dimensional matrix, accuracy and efficiency requirements were satisfied during calculation. Moreover, the variation induced by the transversely isotropic properties and interface conditions, presented in the dynamic responses, reiterated that these factors should be considered during the design and analysis of asphalt pavement structures.
    • Download: (2.394Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave Propagation Approach for Elastic Transient Responses of Transversely Isotropic Asphalt Pavement under an Impact Load: A Semianalytical Solution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270756
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorZejiao Dong
    contributor authorWeiwen Quan
    contributor authorXianyong Ma
    contributor authorLiping Cao
    contributor authorHongliang Zhang
    contributor authorZhen Leng
    date accessioned2022-02-01T00:01:12Z
    date available2022-02-01T00:01:12Z
    date issued9/1/2021
    identifier otherJPEODX.0000271.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270756
    description abstractThe conventional transfer matrix method, adopted formerly in a semianalytical solution for layered elastic or viscoelastic asphalt pavement structures, has inherent deficiencies, such as ill-condition matrix, numerical overflow, and error accumulation, due to exponential items. This phenomenon is more evident in multilayered dynamic analysis with imperfect interfaces. Moreover, several studies revealed that pavement materials exhibit transverse isotropy in service. Consequently, a novel semianalytical solution methodology, wave propagation approach, was proposed herein to calculate the dynamic responses of asphalt pavement under an impact load considering the transversely isotropic material model and the imperfect interfaces. First, the transfer matrix was established based on matrix theory and wave propagation approach, while the relation between the state vector and wave vector in the transformed domain was constructed simultaneously. Then, combined with the boundary conditions and interface contact conditions, the solution of the wave vector in the transformed domain was derived. Finally, based on Laplace–Hankel inverse transform, the state vector in the time domain was obtained, followed by numerical computation with programming. The accuracy and efficiency of the proposed semianalytical solution, together with the influence regularities of several variables, were discussed. Results showed that due to the absence of positive exponential functions and a large-dimensional matrix, accuracy and efficiency requirements were satisfied during calculation. Moreover, the variation induced by the transversely isotropic properties and interface conditions, presented in the dynamic responses, reiterated that these factors should be considered during the design and analysis of asphalt pavement structures.
    publisherASCE
    titleWave Propagation Approach for Elastic Transient Responses of Transversely Isotropic Asphalt Pavement under an Impact Load: A Semianalytical Solution
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000271
    journal fristpage04021021-1
    journal lastpage04021021-12
    page12
    treeJournal of Transportation Engineering, Part B: Pavements:;2021:;Volume ( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian