YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of a Moored, Circular Pipe Breakwater

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2021:;Volume ( 147 ):;issue: 005::page 04021019-1
    Author:
    William Rossell
    ,
    Yavuz Ozeren
    ,
    Daniel Wren
    DOI: 10.1061/(ASCE)WW.1943-5460.0000657
    Publisher: ASCE
    Abstract: Floating breakwaters are commonly used for shoreline protection in coastal areas and may offer a relatively cost-effective method for embankment protection in irrigation reservoirs. This study explored the potential use of a moored cylindrical floating breakwater design constructed from corrugated irrigation pipe and included a preliminary investigation of the performance of a floating breakwater that was subjected to regular waves of varying height and period in a laboratory wave tank. Experiments were carried out at the USDA Agricultural Research Service (ARS), National Sedimentation Laboratory in Oxford, Mississippi. The model breakwater was made of a 17.8-cm outer diameter, high-density polyethylene (HDPE) corrugated pipe section, filled with water and restrained under two mooring configurations using steel mooring lines attached to the floor of the flume, either vertically or at an angle on each side of the breakwater. The draft of the breakwater was varied between approximately 87% and 143% of the outer diameter by adjusting the tension of the mooring lines. Additional controlled experiments were performed using the same pipe section under fixed conditions. Waves were measured using capacitance-type wave staffs located both upwave and downwave of the breakwater, and mooring forces were measured using force gauges. Experimental results indicated that the floating breakwater arrangements studied show potential for usefulness in field application, as wave heights were reduced by as much as 60% in some cases. Cable-moored models performed best when fully submerged relatively close to the still water surface. Mooring line slackness reduced the effectiveness of the model in wave attenuation but also reduced the amount of force incurred by the cable mooring system. The cylindrical model best attenuated shorter waves of low to moderate steepness.
    • Download: (1.511Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of a Moored, Circular Pipe Breakwater

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270669
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorWilliam Rossell
    contributor authorYavuz Ozeren
    contributor authorDaniel Wren
    date accessioned2022-01-31T23:58:23Z
    date available2022-01-31T23:58:23Z
    date issued9/1/2021
    identifier other%28ASCE%29WW.1943-5460.0000657.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270669
    description abstractFloating breakwaters are commonly used for shoreline protection in coastal areas and may offer a relatively cost-effective method for embankment protection in irrigation reservoirs. This study explored the potential use of a moored cylindrical floating breakwater design constructed from corrugated irrigation pipe and included a preliminary investigation of the performance of a floating breakwater that was subjected to regular waves of varying height and period in a laboratory wave tank. Experiments were carried out at the USDA Agricultural Research Service (ARS), National Sedimentation Laboratory in Oxford, Mississippi. The model breakwater was made of a 17.8-cm outer diameter, high-density polyethylene (HDPE) corrugated pipe section, filled with water and restrained under two mooring configurations using steel mooring lines attached to the floor of the flume, either vertically or at an angle on each side of the breakwater. The draft of the breakwater was varied between approximately 87% and 143% of the outer diameter by adjusting the tension of the mooring lines. Additional controlled experiments were performed using the same pipe section under fixed conditions. Waves were measured using capacitance-type wave staffs located both upwave and downwave of the breakwater, and mooring forces were measured using force gauges. Experimental results indicated that the floating breakwater arrangements studied show potential for usefulness in field application, as wave heights were reduced by as much as 60% in some cases. Cable-moored models performed best when fully submerged relatively close to the still water surface. Mooring line slackness reduced the effectiveness of the model in wave attenuation but also reduced the amount of force incurred by the cable mooring system. The cylindrical model best attenuated shorter waves of low to moderate steepness.
    publisherASCE
    titleExperimental Investigation of a Moored, Circular Pipe Breakwater
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000657
    journal fristpage04021019-1
    journal lastpage04021019-15
    page15
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian