YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observations on Floc Settling Velocities in the Tamar Estuary, United Kingdom

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2021:;Volume ( 147 ):;issue: 005::page 04021015-1
    Author:
    William H. McAnally
    ,
    Ashish J. Mehta
    ,
    Andrew J. Manning
    DOI: 10.1061/(ASCE)WW.1943-5460.0000649
    Publisher: ASCE
    Abstract: Measurements in the mesotidal Tamar estuary (UK) reported previously indicate a dependence of the floc settling velocity on the shear rate and the suspended fine sediment concentration or volume fraction. Typical time-independent analytic formulas for the floc settling velocity tend to follow the mean trend but fail to provide an explanation for the characteristic data spread. Moreover, they assume floc diameter to be single-valued such as the mean or the median. Given this constraint, an examination of tide-induced trends in the Tamar settling velocities is attempted by simple time-dependent modeling of aggregation, i.e., the dynamics of floc growth and breakup. The effect of aggregation on the settling velocity and diameter is simulated over a representative one-half tidal cycle. Starting at low water (LW) slack at the onset of the sediment erosional phase during the first quarter tide, as the shear rate and volume fraction increase, floc growth is shown to increase the settling velocity that peaks at a shear rate in the range of 15−30 s−1. At higher shear rates, as floc breakup supersedes the effect of sediment concentration in promoting growth, the settling velocity gradually decreases until the shear rate reaches its maximum value on the order of 102 s−1 at the strength of flow. During the following depositional phase in the second quarter tide, as the shear rate decreases the settling velocity increases continually until high water (HW) slack when it achieves its overall maximum value as the shear rate approaches zero. Thus, the loci of settling velocity versus shear rate differ between the quarter tides and result in shear rate versus settling velocity hysteresis. Moreover, it is shown that in the Tamar, tidal variation prevents the settling velocity and diameter from always achieving the equilibrium assumed in analytic formulas. Thus, aggregation modeling serves as a useful guide for resolving temporal trends in floc properties.
    • Download: (1.764Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observations on Floc Settling Velocities in the Tamar Estuary, United Kingdom

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270666
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorWilliam H. McAnally
    contributor authorAshish J. Mehta
    contributor authorAndrew J. Manning
    date accessioned2022-01-31T23:58:19Z
    date available2022-01-31T23:58:19Z
    date issued9/1/2021
    identifier other%28ASCE%29WW.1943-5460.0000649.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270666
    description abstractMeasurements in the mesotidal Tamar estuary (UK) reported previously indicate a dependence of the floc settling velocity on the shear rate and the suspended fine sediment concentration or volume fraction. Typical time-independent analytic formulas for the floc settling velocity tend to follow the mean trend but fail to provide an explanation for the characteristic data spread. Moreover, they assume floc diameter to be single-valued such as the mean or the median. Given this constraint, an examination of tide-induced trends in the Tamar settling velocities is attempted by simple time-dependent modeling of aggregation, i.e., the dynamics of floc growth and breakup. The effect of aggregation on the settling velocity and diameter is simulated over a representative one-half tidal cycle. Starting at low water (LW) slack at the onset of the sediment erosional phase during the first quarter tide, as the shear rate and volume fraction increase, floc growth is shown to increase the settling velocity that peaks at a shear rate in the range of 15−30 s−1. At higher shear rates, as floc breakup supersedes the effect of sediment concentration in promoting growth, the settling velocity gradually decreases until the shear rate reaches its maximum value on the order of 102 s−1 at the strength of flow. During the following depositional phase in the second quarter tide, as the shear rate decreases the settling velocity increases continually until high water (HW) slack when it achieves its overall maximum value as the shear rate approaches zero. Thus, the loci of settling velocity versus shear rate differ between the quarter tides and result in shear rate versus settling velocity hysteresis. Moreover, it is shown that in the Tamar, tidal variation prevents the settling velocity and diameter from always achieving the equilibrium assumed in analytic formulas. Thus, aggregation modeling serves as a useful guide for resolving temporal trends in floc properties.
    publisherASCE
    titleObservations on Floc Settling Velocities in the Tamar Estuary, United Kingdom
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000649
    journal fristpage04021015-1
    journal lastpage04021015-9
    page9
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian