YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deep Reinforcement Learning for Optimal Hydropower Reservoir Operation

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 008::page 04021045-1
    Author:
    Wei Xu
    ,
    Fanlin Meng
    ,
    Weisi Guo
    ,
    Xia Li
    ,
    Guangtao Fu
    DOI: 10.1061/(ASCE)WR.1943-5452.0001409
    Publisher: ASCE
    Abstract: Optimal operation of hydropower reservoir systems is a classical optimization problem of high dimensionality and stochastic nature. A key challenge lies in improving the interpretability of operation strategies, i.e., the cause–effect relationship between system outputs (or actions) and contributing variables such as states and inputs. This paper reports for the first time a new deep reinforcement learning (DRL) framework for optimal operation of reservoir systems based on deep Q-networks (DQNs), which provides a significant advance in understanding the performance of optimal operations. DQN combines Q-learning and two deep artificial neural networks (ANNs), and acts as the agent to interact with the reservoir system through learning its states and providing actions. Three knowledge forms of learning considering the states, actions, and rewards were constructed to improve the interpretability of operation strategies. The impacts of these knowledge forms and DRL learning parameters on operation performance were analyzed. The DRL framework was tested on the Huanren hydropower system in China, using 400-year synthetic flow data for training and 30-year observed flow data for verification. The discretization levels of reservoir water level and energy output yield contrasting effects: finer discretization of water level improved performance in terms of annual hydropower generated and hydropower production reliability; however, finer discretization of hydropower production can reduce search efficiency, and thus the resulting DRL performance. Compared with benchmark algorithms including dynamic programming, stochastic dynamic programming, and decision tree, the proposed DRL approach can effectively factor in future inflow uncertainties when determining optimal operations and can generate markedly higher hydropower. This study provides new knowledge of the performance of DRL in the context of hydropower system characteristics and data input features, and shows promise for potentially being implemented in practice to derive operation policies that can be updated automatically by learning from new data.
    • Download: (1.728Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deep Reinforcement Learning for Optimal Hydropower Reservoir Operation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270636
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorWei Xu
    contributor authorFanlin Meng
    contributor authorWeisi Guo
    contributor authorXia Li
    contributor authorGuangtao Fu
    date accessioned2022-01-31T23:57:17Z
    date available2022-01-31T23:57:17Z
    date issued8/1/2021
    identifier other%28ASCE%29WR.1943-5452.0001409.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270636
    description abstractOptimal operation of hydropower reservoir systems is a classical optimization problem of high dimensionality and stochastic nature. A key challenge lies in improving the interpretability of operation strategies, i.e., the cause–effect relationship between system outputs (or actions) and contributing variables such as states and inputs. This paper reports for the first time a new deep reinforcement learning (DRL) framework for optimal operation of reservoir systems based on deep Q-networks (DQNs), which provides a significant advance in understanding the performance of optimal operations. DQN combines Q-learning and two deep artificial neural networks (ANNs), and acts as the agent to interact with the reservoir system through learning its states and providing actions. Three knowledge forms of learning considering the states, actions, and rewards were constructed to improve the interpretability of operation strategies. The impacts of these knowledge forms and DRL learning parameters on operation performance were analyzed. The DRL framework was tested on the Huanren hydropower system in China, using 400-year synthetic flow data for training and 30-year observed flow data for verification. The discretization levels of reservoir water level and energy output yield contrasting effects: finer discretization of water level improved performance in terms of annual hydropower generated and hydropower production reliability; however, finer discretization of hydropower production can reduce search efficiency, and thus the resulting DRL performance. Compared with benchmark algorithms including dynamic programming, stochastic dynamic programming, and decision tree, the proposed DRL approach can effectively factor in future inflow uncertainties when determining optimal operations and can generate markedly higher hydropower. This study provides new knowledge of the performance of DRL in the context of hydropower system characteristics and data input features, and shows promise for potentially being implemented in practice to derive operation policies that can be updated automatically by learning from new data.
    publisherASCE
    titleDeep Reinforcement Learning for Optimal Hydropower Reservoir Operation
    typeJournal Paper
    journal volume147
    journal issue8
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001409
    journal fristpage04021045-1
    journal lastpage04021045-15
    page15
    treeJournal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian