YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Asset Management Decision Support Model for Water Distribution Systems: Impact of Water Pipe Failure on Road and Water Networks

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 005::page 04021022-1
    Author:
    Ram K. Mazumder
    ,
    Abdullahi M. Salman
    ,
    Yue Li
    ,
    Xiong Yu
    DOI: 10.1061/(ASCE)WR.1943-5452.0001365
    Publisher: ASCE
    Abstract: Failure of a buried water pipeline can have an adverse effect on neighboring infrastructure, especially road networks. The impact of the failure of water pipelines on road networks and water distribution systems (WDSs) significantly increases the economic and social consequences of such failure. This paper presents a risk-informed decision support framework for WDSs considering the risk and the criticality of components to aid maintenance prioritization. The probability of water pipe failure is estimated using a physical probabilistic approach. The economic, operational, environmental, and social consequences of the failure of the integrated water and road segments are evaluated using 14 factors. The economic, operational, environmental, and social consequences are combined using fuzzy hierarchical inference to determine the overall consequence of the failure of each integrated segment (road and water network sharing the same geographical space). The risk of assets is determined by utilizing two approaches: risk equation and risk matrix. A shortest path–based network efficiency metric is then used to identify the impact of the failure of water pipelines on both infrastructure systems. The final decision alternatives are prepared by combining the outputs from the risk analysis and the network efficiency metric to prioritize maintenance tasks. A geospatial model is used to identify dependent road and collocated water segments sharing the same geographical space. The water and road networks of the Rancho Solano Zone III area of the city of Fairfield, California, are used to illustrate the proposed framework. The results show that the failure of a critical segment can have a significant impact on the efficiency of both networks. In the considered case study, the failure of a critical segment can result in about 7.5% and 9.6% system efficiency loss in the water and road networks, respectively. The proposed model is expected to assist in integrated municipal asset management decision-making.
    • Download: (3.191Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Asset Management Decision Support Model for Water Distribution Systems: Impact of Water Pipe Failure on Road and Water Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270599
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorRam K. Mazumder
    contributor authorAbdullahi M. Salman
    contributor authorYue Li
    contributor authorXiong Yu
    date accessioned2022-01-31T23:55:58Z
    date available2022-01-31T23:55:58Z
    date issued5/1/2021
    identifier other%28ASCE%29WR.1943-5452.0001365.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270599
    description abstractFailure of a buried water pipeline can have an adverse effect on neighboring infrastructure, especially road networks. The impact of the failure of water pipelines on road networks and water distribution systems (WDSs) significantly increases the economic and social consequences of such failure. This paper presents a risk-informed decision support framework for WDSs considering the risk and the criticality of components to aid maintenance prioritization. The probability of water pipe failure is estimated using a physical probabilistic approach. The economic, operational, environmental, and social consequences of the failure of the integrated water and road segments are evaluated using 14 factors. The economic, operational, environmental, and social consequences are combined using fuzzy hierarchical inference to determine the overall consequence of the failure of each integrated segment (road and water network sharing the same geographical space). The risk of assets is determined by utilizing two approaches: risk equation and risk matrix. A shortest path–based network efficiency metric is then used to identify the impact of the failure of water pipelines on both infrastructure systems. The final decision alternatives are prepared by combining the outputs from the risk analysis and the network efficiency metric to prioritize maintenance tasks. A geospatial model is used to identify dependent road and collocated water segments sharing the same geographical space. The water and road networks of the Rancho Solano Zone III area of the city of Fairfield, California, are used to illustrate the proposed framework. The results show that the failure of a critical segment can have a significant impact on the efficiency of both networks. In the considered case study, the failure of a critical segment can result in about 7.5% and 9.6% system efficiency loss in the water and road networks, respectively. The proposed model is expected to assist in integrated municipal asset management decision-making.
    publisherASCE
    titleAsset Management Decision Support Model for Water Distribution Systems: Impact of Water Pipe Failure on Road and Water Networks
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001365
    journal fristpage04021022-1
    journal lastpage04021022-20
    page20
    treeJournal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian