YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland

    Source: Journal of Surveying Engineering:;2021:;Volume ( 147 ):;issue: 003::page 04021009-1
    Author:
    Shuangcheng Zhang
    ,
    Tao Wang
    ,
    Lixia Wang
    ,
    Jingjiang Zhang
    ,
    Jilun Peng
    ,
    Qi Liu
    DOI: 10.1061/(ASCE)SU.1943-5428.0000355
    Publisher: ASCE
    Abstract: Global navigation satellite system interferometric reflectometry (GNSS-IR) is a new remote sensing method that has shown great potential for estimating soil moisture variation and vegetation growth in the vicinity of GNSS sites. Various retrieval methods have been proposed, and the accuracy of the retrieval results are continually improving. However, few experiments have comprehensively evaluated the potential of the BeiDou Navigation Satellite System (BDS) to retrieve soil moisture and vegetation growth in a farmland environment, especially the vegetation height. In this study, volumetric soil moisture (VSM) variation and wheat growth were retrieved from BDS B1/B2/B3 and Global Positioning System (GPS) L1/L2 signal-to-noise ratio (SNR) data collected from a wheat farm in Zhangxizhuang, Beijing, and evaluated by comparison with in situ observations. VSM was retrieved before significant wheat growth and after wheat harvest, wheat growth was retrieved in the remaining period, and traditional, empirical mode decomposition (EMD), and wavelet algorithms were used to estimate the optimal wheat height change process. The experimental results show that the root-mean-square error (RMSE) between GPS L1/L2 and BDS B1/B2/B3 frequencies in VSM retrieval and in situ VSM is 0.039 and 0.035 and 0.027, 0.022, and 0.021  m3·m−3, respectively. Moreover, the negative normalized amplitude exhibits a good correlation with the normalized difference vegetation index (NDVI) during high wheat coverage (R=0.67). The GNSS-derived wheat height is consistent with the in situ wheat height change, and the retrieval value perfectly reflects the process of the wheat crop height changing rapidly to relatively stable and then to harvest. Thus, GNSS-IR technology has excellent capability and potential for monitoring farmland VSM and vegetation growth.
    • Download: (3.431Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270462
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorShuangcheng Zhang
    contributor authorTao Wang
    contributor authorLixia Wang
    contributor authorJingjiang Zhang
    contributor authorJilun Peng
    contributor authorQi Liu
    date accessioned2022-01-31T23:51:01Z
    date available2022-01-31T23:51:01Z
    date issued8/1/2021
    identifier other%28ASCE%29SU.1943-5428.0000355.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270462
    description abstractGlobal navigation satellite system interferometric reflectometry (GNSS-IR) is a new remote sensing method that has shown great potential for estimating soil moisture variation and vegetation growth in the vicinity of GNSS sites. Various retrieval methods have been proposed, and the accuracy of the retrieval results are continually improving. However, few experiments have comprehensively evaluated the potential of the BeiDou Navigation Satellite System (BDS) to retrieve soil moisture and vegetation growth in a farmland environment, especially the vegetation height. In this study, volumetric soil moisture (VSM) variation and wheat growth were retrieved from BDS B1/B2/B3 and Global Positioning System (GPS) L1/L2 signal-to-noise ratio (SNR) data collected from a wheat farm in Zhangxizhuang, Beijing, and evaluated by comparison with in situ observations. VSM was retrieved before significant wheat growth and after wheat harvest, wheat growth was retrieved in the remaining period, and traditional, empirical mode decomposition (EMD), and wavelet algorithms were used to estimate the optimal wheat height change process. The experimental results show that the root-mean-square error (RMSE) between GPS L1/L2 and BDS B1/B2/B3 frequencies in VSM retrieval and in situ VSM is 0.039 and 0.035 and 0.027, 0.022, and 0.021  m3·m−3, respectively. Moreover, the negative normalized amplitude exhibits a good correlation with the normalized difference vegetation index (NDVI) during high wheat coverage (R=0.67). The GNSS-derived wheat height is consistent with the in situ wheat height change, and the retrieval value perfectly reflects the process of the wheat crop height changing rapidly to relatively stable and then to harvest. Thus, GNSS-IR technology has excellent capability and potential for monitoring farmland VSM and vegetation growth.
    publisherASCE
    titleEvaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000355
    journal fristpage04021009-1
    journal lastpage04021009-14
    page14
    treeJournal of Surveying Engineering:;2021:;Volume ( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian