YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Progressive Collapse Resistance of Emulative Precast Concrete Frames with Various Reinforcing Details

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 008::page 04021107-1
    Author:
    Kai Qian
    ,
    Shi-Lin Liang
    ,
    Feng Fu
    ,
    Yi Li
    DOI: 10.1061/(ASCE)ST.1943-541X.0003065
    Publisher: ASCE
    Abstract: In this paper, three precast concrete (PC) frames and one cast-in-situ reinforced-concrete (RC) frame were cast and tested to investigate the load-resisting mechanisms of emulative PC frames with various reinforcing details to resist progressive collapse. In the beams of PC frames, the top reinforcement was continuous without curtailment while the bottom reinforcement had different anchorage strength. Test results indicated that, in the event of middle column removal, similar to RC frame, beam action, compressive arch action (CAA), and tensile catenary action (TCA) could be developed sequentially in PC frames with emulative connections, PC frames with sufficient anchorage strength or additional bottom U-shaped bars passing through the middle joint could obtain similar level of CAA capacity as RC frame. However, they may achieve relatively lower TCA capacity due to higher bond strength between the top reinforcement and cast-in-situ topping layer in beams, owing to higher concrete strength in the topping layer, resulting in earlier fracture of the beam top reinforcements. Conversely, PC frames with insufficient anchorage could achieve comparable TCA capacity as RC frame. However, their CAA capacity was less than that of RC frames due to pulling-out failure of bottom reinforcements, preventing further development of strain hardening at beam action and CAA stages. Based on test results and analytical studies, it was found that, similar to RC frames, PC frames with emulative connections could provide sufficient rotational capacity to ensure development of tie-force as required by the design guidelines.
    • Download: (1.620Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Progressive Collapse Resistance of Emulative Precast Concrete Frames with Various Reinforcing Details

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270438
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorKai Qian
    contributor authorShi-Lin Liang
    contributor authorFeng Fu
    contributor authorYi Li
    date accessioned2022-01-31T23:50:15Z
    date available2022-01-31T23:50:15Z
    date issued8/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003065.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270438
    description abstractIn this paper, three precast concrete (PC) frames and one cast-in-situ reinforced-concrete (RC) frame were cast and tested to investigate the load-resisting mechanisms of emulative PC frames with various reinforcing details to resist progressive collapse. In the beams of PC frames, the top reinforcement was continuous without curtailment while the bottom reinforcement had different anchorage strength. Test results indicated that, in the event of middle column removal, similar to RC frame, beam action, compressive arch action (CAA), and tensile catenary action (TCA) could be developed sequentially in PC frames with emulative connections, PC frames with sufficient anchorage strength or additional bottom U-shaped bars passing through the middle joint could obtain similar level of CAA capacity as RC frame. However, they may achieve relatively lower TCA capacity due to higher bond strength between the top reinforcement and cast-in-situ topping layer in beams, owing to higher concrete strength in the topping layer, resulting in earlier fracture of the beam top reinforcements. Conversely, PC frames with insufficient anchorage could achieve comparable TCA capacity as RC frame. However, their CAA capacity was less than that of RC frames due to pulling-out failure of bottom reinforcements, preventing further development of strain hardening at beam action and CAA stages. Based on test results and analytical studies, it was found that, similar to RC frames, PC frames with emulative connections could provide sufficient rotational capacity to ensure development of tie-force as required by the design guidelines.
    publisherASCE
    titleProgressive Collapse Resistance of Emulative Precast Concrete Frames with Various Reinforcing Details
    typeJournal Paper
    journal volume147
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003065
    journal fristpage04021107-1
    journal lastpage04021107-11
    page11
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian