YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anchorage Design Solution for Attaching an Approved Traffic Barrier to Multivoid Aluminum Bridge Decks

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 007::page 04021097-1
    Author:
    Charles-Darwin Annan
    ,
    Martin Cormier
    ,
    Mario Fafard
    DOI: 10.1061/(ASCE)ST.1943-541X.0003049
    Publisher: ASCE
    Abstract: Bridge decks are the most stressed elements in a highway bridge due to direct loading from vehicular traffic and occasional overloading, combined with stresses induced by environmental effects and the use of deicing salts in cold wintery conditions. The use of structural aluminum alloys offers considerable promise for building modern bridges and for redecking aging and deficient bridges. Traffic barriers are mounted on bridge decks to provide a physical impassable limit to redirect errant vehicles safely onto the roadway. Current design standards require that the traffic barrier and anchorage system be physically tested under full-scale crash conditions to assure satisfactory interaction with impacting vehicles at the desired level of performance. Certain modifications to an already crash-tested and approved barrier may be permitted if it can be demonstrated by comprehensive analyses that they would not adversely affect the designed performance of the safety barrier. The present study seeks to develop and validate an anchorage design for attaching an already approved traffic barrier on bridge decks made from welded multivoid aluminum extrusions. The anchorage design facilitates installation and is able to absorb vehicular impact loads without compromising the structural integrity of the aluminum bridge deck. The study consists of two stages: (1) the capacity design and analysis of the attachment system based on equivalent static forces, and (2) a dynamic simulation of a full crash-test. This is followed by an approved procedure for verification and validation of the barrier-vehicle interaction, by comparing simulation results with observations from the original physical crash test.
    • Download: (2.803Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anchorage Design Solution for Attaching an Approved Traffic Barrier to Multivoid Aluminum Bridge Decks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270422
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorCharles-Darwin Annan
    contributor authorMartin Cormier
    contributor authorMario Fafard
    date accessioned2022-01-31T23:49:43Z
    date available2022-01-31T23:49:43Z
    date issued7/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003049.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270422
    description abstractBridge decks are the most stressed elements in a highway bridge due to direct loading from vehicular traffic and occasional overloading, combined with stresses induced by environmental effects and the use of deicing salts in cold wintery conditions. The use of structural aluminum alloys offers considerable promise for building modern bridges and for redecking aging and deficient bridges. Traffic barriers are mounted on bridge decks to provide a physical impassable limit to redirect errant vehicles safely onto the roadway. Current design standards require that the traffic barrier and anchorage system be physically tested under full-scale crash conditions to assure satisfactory interaction with impacting vehicles at the desired level of performance. Certain modifications to an already crash-tested and approved barrier may be permitted if it can be demonstrated by comprehensive analyses that they would not adversely affect the designed performance of the safety barrier. The present study seeks to develop and validate an anchorage design for attaching an already approved traffic barrier on bridge decks made from welded multivoid aluminum extrusions. The anchorage design facilitates installation and is able to absorb vehicular impact loads without compromising the structural integrity of the aluminum bridge deck. The study consists of two stages: (1) the capacity design and analysis of the attachment system based on equivalent static forces, and (2) a dynamic simulation of a full crash-test. This is followed by an approved procedure for verification and validation of the barrier-vehicle interaction, by comparing simulation results with observations from the original physical crash test.
    publisherASCE
    titleAnchorage Design Solution for Attaching an Approved Traffic Barrier to Multivoid Aluminum Bridge Decks
    typeJournal Paper
    journal volume147
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003049
    journal fristpage04021097-1
    journal lastpage04021097-13
    page13
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian