YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simplified Nonlinear Simulation of Rectangular Concrete-Filled Steel Tubular Columns

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 006::page 04021061-1
    Author:
    Zhong Tao
    ,
    Utsab Katwal
    ,
    Brian Uy
    ,
    Wen-Da Wang
    DOI: 10.1061/(ASCE)ST.1943-541X.0003021
    Publisher: ASCE
    Abstract: In detailed three-dimensional (3D) finite-element modeling, two-dimensional and/or 3D elements are widely used because of their high accuracy and ease of use despite the high computational cost. In contrast, simplified modeling based on fiber beam element (FBE) formulation is preferred for developing macro models to simulate structural frames due to its simplicity and computational efficiency. As for the FBE simulation of concrete-filled steel tubular (CFST) columns, its accuracy largely depends on the input steel and concrete material models, which should implicitly consider the material nonlinearity and interaction between the steel and concrete components. The authors have previously developed a FBE model for circular CFST columns, and this paper is a continuation of the previous work. In this paper, uniaxial effective stress–strain relationships are developed for the steel and concrete materials in rectangular CFST columns based on rigorous analysis of data generated from 3D finite-element modeling of stub columns. Thus, the material models have implicitly considered the effects of yielding and local buckling of the steel tube and passive confinement to the concrete. Meanwhile, the size effect is also considered in the concrete model. The accuracy of the proposed material models is verified against a database of rectangular CFST stub columns covering a wide range of material and geometric parameters. The developed material models are further used to simulate rectangular CFST slender columns and beam-columns, and a reasonably good agreement is achieved between the experimental and predicted load–deformation curves.
    • Download: (1.548Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simplified Nonlinear Simulation of Rectangular Concrete-Filled Steel Tubular Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270395
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZhong Tao
    contributor authorUtsab Katwal
    contributor authorBrian Uy
    contributor authorWen-Da Wang
    date accessioned2022-01-31T23:48:42Z
    date available2022-01-31T23:48:42Z
    date issued6/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003021.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270395
    description abstractIn detailed three-dimensional (3D) finite-element modeling, two-dimensional and/or 3D elements are widely used because of their high accuracy and ease of use despite the high computational cost. In contrast, simplified modeling based on fiber beam element (FBE) formulation is preferred for developing macro models to simulate structural frames due to its simplicity and computational efficiency. As for the FBE simulation of concrete-filled steel tubular (CFST) columns, its accuracy largely depends on the input steel and concrete material models, which should implicitly consider the material nonlinearity and interaction between the steel and concrete components. The authors have previously developed a FBE model for circular CFST columns, and this paper is a continuation of the previous work. In this paper, uniaxial effective stress–strain relationships are developed for the steel and concrete materials in rectangular CFST columns based on rigorous analysis of data generated from 3D finite-element modeling of stub columns. Thus, the material models have implicitly considered the effects of yielding and local buckling of the steel tube and passive confinement to the concrete. Meanwhile, the size effect is also considered in the concrete model. The accuracy of the proposed material models is verified against a database of rectangular CFST stub columns covering a wide range of material and geometric parameters. The developed material models are further used to simulate rectangular CFST slender columns and beam-columns, and a reasonably good agreement is achieved between the experimental and predicted load–deformation curves.
    publisherASCE
    titleSimplified Nonlinear Simulation of Rectangular Concrete-Filled Steel Tubular Columns
    typeJournal Paper
    journal volume147
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003021
    journal fristpage04021061-1
    journal lastpage04021061-16
    page16
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian