YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying the Ductility-Related Force Modification Factor for 10-Story Timber–RC Hybrid Building Using FEMA P695 Procedure and Considering the 2015 NBC Seismic Hazard

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 005::page 04021052-1
    Author:
    Solomon Tesfamariam
    ,
    Konstantinos Skandalos
    ,
    Katsuichiro Goda
    ,
    Matiyas A. Bezabeh
    ,
    Girma Bitsuamlak
    ,
    Marjan Popovski
    DOI: 10.1061/(ASCE)ST.1943-541X.0003007
    Publisher: ASCE
    Abstract: In this work, a 10-story uncoupled (10S-U) hybrid seismic force resisting system, consisting of cross-laminated timber (CLT) walls and reinforced concrete (RC) beams, is considered. Required design ductility factor Rd, in congruence with the National Building Code of Canada, was developed using FEMA P695 collapse risk procedure. Two trial Rd factors, Rd=2 and Rd=3, were first used to design the hybrid building for seismicity of Vancouver, BC, and 3D numerical models were developed in Open System for Earthquake Engineering Simulation (OpenSees) finite element framework. The energy dissipation of the structural system was enhanced using buckling restraining brace hold-downs and energy dissipator connection between the panels. The rocking response mechanism governed and, as a result, the cyclic pushover results show recentering capability. A suitable set of 30 ground motion records that reflect the seismic hazard of Vancouver, British Columbia, was selected in congruence with the 2015 National Building Code of Canada (NBC). Using incremental dynamic analysis, the collapse risk and collapse margin ratios were obtained to check the suitability of the two proposed Rd factors. The Rd=2 factor was shown to be acceptable for the 10S-U structural system.
    • Download: (2.253Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying the Ductility-Related Force Modification Factor for 10-Story Timber–RC Hybrid Building Using FEMA P695 Procedure and Considering the 2015 NBC Seismic Hazard

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270378
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSolomon Tesfamariam
    contributor authorKonstantinos Skandalos
    contributor authorKatsuichiro Goda
    contributor authorMatiyas A. Bezabeh
    contributor authorGirma Bitsuamlak
    contributor authorMarjan Popovski
    date accessioned2022-01-31T23:48:04Z
    date available2022-01-31T23:48:04Z
    date issued5/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270378
    description abstractIn this work, a 10-story uncoupled (10S-U) hybrid seismic force resisting system, consisting of cross-laminated timber (CLT) walls and reinforced concrete (RC) beams, is considered. Required design ductility factor Rd, in congruence with the National Building Code of Canada, was developed using FEMA P695 collapse risk procedure. Two trial Rd factors, Rd=2 and Rd=3, were first used to design the hybrid building for seismicity of Vancouver, BC, and 3D numerical models were developed in Open System for Earthquake Engineering Simulation (OpenSees) finite element framework. The energy dissipation of the structural system was enhanced using buckling restraining brace hold-downs and energy dissipator connection between the panels. The rocking response mechanism governed and, as a result, the cyclic pushover results show recentering capability. A suitable set of 30 ground motion records that reflect the seismic hazard of Vancouver, British Columbia, was selected in congruence with the 2015 National Building Code of Canada (NBC). Using incremental dynamic analysis, the collapse risk and collapse margin ratios were obtained to check the suitability of the two proposed Rd factors. The Rd=2 factor was shown to be acceptable for the 10S-U structural system.
    publisherASCE
    titleQuantifying the Ductility-Related Force Modification Factor for 10-Story Timber–RC Hybrid Building Using FEMA P695 Procedure and Considering the 2015 NBC Seismic Hazard
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003007
    journal fristpage04021052-1
    journal lastpage04021052-10
    page10
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian