YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cloud-IDA-MSA Conversion of Fragility Curves for Efficient and High-Fidelity Resilience Assessment

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 005::page 04021049-1
    Author:
    Yutao Pang
    ,
    Xiaowei Wang
    DOI: 10.1061/(ASCE)ST.1943-541X.0002998
    Publisher: ASCE
    Abstract: In performance-based earthquake engineering framework, seismic fragility functions play a fundamental role for quantifying the seismic resilience. There are three main approaches for performing the seismic fragility analysis: cloud analysis, incremental dynamic analysis (IDA), and multiple strip analysis (MSA). These approaches require different levels of computational efforts and yield different levels of accuracy on fragility curve estimates, leading to different predictions of seismic resilience. This paper presents an efficient method for converting fragility curves from the cloud to IDA and MSA and from IDA to MSA toward an efficient and high-fidelity resilience assessment. The proposed method requires two fragility points to obtain the fragility median and dispersion parameters that yield converted fragility curves agreeing with the target fragility curves. This method and associated resilience assessment are demonstrated through two case studies, one a typical two-span highway bridge in firm ground under longitudinal seismic excitations and the other an extended pile-shaft-supported bridge in liquefaction-induced laterally spreading ground under transverse seismic excitations. The results show that the converted fragility curves coincide very well with the target fragility curves. An efficient and high-fidelity resilience assessment can be achieved leveraging the proposed method. For easy implementation, codes of the proposed method are available online.
    • Download: (1.042Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cloud-IDA-MSA Conversion of Fragility Curves for Efficient and High-Fidelity Resilience Assessment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270371
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorYutao Pang
    contributor authorXiaowei Wang
    date accessioned2022-01-31T23:47:52Z
    date available2022-01-31T23:47:52Z
    date issued5/1/2021
    identifier other%28ASCE%29ST.1943-541X.0002998.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270371
    description abstractIn performance-based earthquake engineering framework, seismic fragility functions play a fundamental role for quantifying the seismic resilience. There are three main approaches for performing the seismic fragility analysis: cloud analysis, incremental dynamic analysis (IDA), and multiple strip analysis (MSA). These approaches require different levels of computational efforts and yield different levels of accuracy on fragility curve estimates, leading to different predictions of seismic resilience. This paper presents an efficient method for converting fragility curves from the cloud to IDA and MSA and from IDA to MSA toward an efficient and high-fidelity resilience assessment. The proposed method requires two fragility points to obtain the fragility median and dispersion parameters that yield converted fragility curves agreeing with the target fragility curves. This method and associated resilience assessment are demonstrated through two case studies, one a typical two-span highway bridge in firm ground under longitudinal seismic excitations and the other an extended pile-shaft-supported bridge in liquefaction-induced laterally spreading ground under transverse seismic excitations. The results show that the converted fragility curves coincide very well with the target fragility curves. An efficient and high-fidelity resilience assessment can be achieved leveraging the proposed method. For easy implementation, codes of the proposed method are available online.
    publisherASCE
    titleCloud-IDA-MSA Conversion of Fragility Curves for Efficient and High-Fidelity Resilience Assessment
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002998
    journal fristpage04021049-1
    journal lastpage04021049-14
    page14
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian