YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Fiber Reinforced Key Joints in Precast Concrete Segmental Bridge: Experimental and Numerical Analysis

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 008::page 04021053-1
    Author:
    Jundong Fu
    ,
    Aimin Yuan
    ,
    Shui Wan
    DOI: 10.1061/(ASCE)BE.1943-5592.0001717
    Publisher: ASCE
    Abstract: Fiber reinforced concrete (FRC) has been gradually applied to the construction of precast segmental bridges, but due to the discontinuity of the joint structure and the existence of keys, the stress at the joint is complex. Taking the number of keys at the joint, the presence or not of reinforcement in keys, the height to width ratio of specimens and joint angle as the design parameters, 10 pairs of specimens with 2% fiber ratio and 100.1 MPa FRC dry joint matching were tested under combined bending and shear load in this study. The crack development process, failure mode, cracking load, and ultimate load were also observed. The results show that the mechanical properties of specimens with 30° and 60° joint angle are better than that of 45° for both single-keyed and double-keyed specimens. With the increase in the number of keys and the ratio of height to width, the cracking load, ultimate load, and overall stiffness of the specimens are greatly improved. The internal reinforcement in the specimen can increase the cracking load and ultimate load, change the failure mode and increase the integrity of the specimen. The reinforcement in the key has little effect on the mechanical properties and could not change the failure mode of the specimens under combined bending and shear load. In addition, a numerical analysis model was established based on a concrete damage plasticity model in ABAQUS software to investigate structural behavior of keyed dry joints under combined bending and shear load. Fortunately, the cracking evolution history and final crack pattern presented from finite element analysis results are in good agreement with the experimental results. Moreover, the average deviation of cracking load and ultimate load is only 7.3% and 2%, respectively.
    • Download: (4.578Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Fiber Reinforced Key Joints in Precast Concrete Segmental Bridge: Experimental and Numerical Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270357
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorJundong Fu
    contributor authorAimin Yuan
    contributor authorShui Wan
    date accessioned2022-01-31T23:47:21Z
    date available2022-01-31T23:47:21Z
    date issued8/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001717.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270357
    description abstractFiber reinforced concrete (FRC) has been gradually applied to the construction of precast segmental bridges, but due to the discontinuity of the joint structure and the existence of keys, the stress at the joint is complex. Taking the number of keys at the joint, the presence or not of reinforcement in keys, the height to width ratio of specimens and joint angle as the design parameters, 10 pairs of specimens with 2% fiber ratio and 100.1 MPa FRC dry joint matching were tested under combined bending and shear load in this study. The crack development process, failure mode, cracking load, and ultimate load were also observed. The results show that the mechanical properties of specimens with 30° and 60° joint angle are better than that of 45° for both single-keyed and double-keyed specimens. With the increase in the number of keys and the ratio of height to width, the cracking load, ultimate load, and overall stiffness of the specimens are greatly improved. The internal reinforcement in the specimen can increase the cracking load and ultimate load, change the failure mode and increase the integrity of the specimen. The reinforcement in the key has little effect on the mechanical properties and could not change the failure mode of the specimens under combined bending and shear load. In addition, a numerical analysis model was established based on a concrete damage plasticity model in ABAQUS software to investigate structural behavior of keyed dry joints under combined bending and shear load. Fortunately, the cracking evolution history and final crack pattern presented from finite element analysis results are in good agreement with the experimental results. Moreover, the average deviation of cracking load and ultimate load is only 7.3% and 2%, respectively.
    publisherASCE
    titleBehavior of Fiber Reinforced Key Joints in Precast Concrete Segmental Bridge: Experimental and Numerical Analysis
    typeJournal Paper
    journal volume26
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001717
    journal fristpage04021053-1
    journal lastpage04021053-17
    page17
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian