YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Equivalent Parameterized Beam Element for Nail Connections in Wood Residential Buildings

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 004::page 04021029-1
    Author:
    Zhixia Ding
    ,
    Wei Zhang
    ,
    Dongping Zhu
    DOI: 10.1061/(ASCE)ST.1943-541X.0002983
    Publisher: ASCE
    Abstract: Nail connections, serving as critical nodes in the loading path of wood residential buildings, could play a crucial role in structural analysis and damage prediction when the structures are subjected to winds and floodings from natural hazards, such as hurricanes or tsunamis. To simulate the nonlinear behavior of the nail connections, nonoriented nonlinear spring elements usually are used for three translation degrees of freedom (DOFs). However, because the three DOFs are decoupled as three independent springs, their coupled effects can not be included in the modeling scheme, which leads to inconsistency for displacement trajectories. The equivalent parametrized beam element (EPBC) was proposed to avoid this inconsistency. However, the EPBC assumes the same response in two transverse directions, inducing inaccurate nail connection response predictions for three-dimensional (3D) problems. To include material nonlinearity and the coupled effects between different DOFs of the nail connections, this study proposes a three-dimensional equivalent parametrized beam element (3DEPBC). An algorithm of importance sampling for shear stiffness (ISSS) was developed to determine the optimal parameters for the 3DEPBC. Data from experimental tests were used to validate the accuracy of the proposed connector modeling scheme. The capability of loading coupling of the 3DEPBC was demonstrated by comparing the result with that of the equivalent nonlinear spring connector (ENSC), which uses nonlinear spring elements, and the EPBC with combined loadings. A case study was presented for the application of the nail model in a real roof. The investigation of shear stress suggested that shear stress has a limited influence on the total stress, indicating that ignoring the shear stress in the ISSS algorithm is reasonable, which also makes the algorithm more applicable. The proposed new connector significantly reduces the number of elements in the building model, and real nonlinear behavior of the building under complicated loadings can be captured carefully.
    • Download: (1.459Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Equivalent Parameterized Beam Element for Nail Connections in Wood Residential Buildings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270354
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZhixia Ding
    contributor authorWei Zhang
    contributor authorDongping Zhu
    date accessioned2022-01-31T23:47:15Z
    date available2022-01-31T23:47:15Z
    date issued4/1/2021
    identifier other%28ASCE%29ST.1943-541X.0002983.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270354
    description abstractNail connections, serving as critical nodes in the loading path of wood residential buildings, could play a crucial role in structural analysis and damage prediction when the structures are subjected to winds and floodings from natural hazards, such as hurricanes or tsunamis. To simulate the nonlinear behavior of the nail connections, nonoriented nonlinear spring elements usually are used for three translation degrees of freedom (DOFs). However, because the three DOFs are decoupled as three independent springs, their coupled effects can not be included in the modeling scheme, which leads to inconsistency for displacement trajectories. The equivalent parametrized beam element (EPBC) was proposed to avoid this inconsistency. However, the EPBC assumes the same response in two transverse directions, inducing inaccurate nail connection response predictions for three-dimensional (3D) problems. To include material nonlinearity and the coupled effects between different DOFs of the nail connections, this study proposes a three-dimensional equivalent parametrized beam element (3DEPBC). An algorithm of importance sampling for shear stiffness (ISSS) was developed to determine the optimal parameters for the 3DEPBC. Data from experimental tests were used to validate the accuracy of the proposed connector modeling scheme. The capability of loading coupling of the 3DEPBC was demonstrated by comparing the result with that of the equivalent nonlinear spring connector (ENSC), which uses nonlinear spring elements, and the EPBC with combined loadings. A case study was presented for the application of the nail model in a real roof. The investigation of shear stress suggested that shear stress has a limited influence on the total stress, indicating that ignoring the shear stress in the ISSS algorithm is reasonable, which also makes the algorithm more applicable. The proposed new connector significantly reduces the number of elements in the building model, and real nonlinear behavior of the building under complicated loadings can be captured carefully.
    publisherASCE
    titleThree-Dimensional Equivalent Parameterized Beam Element for Nail Connections in Wood Residential Buildings
    typeJournal Paper
    journal volume147
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002983
    journal fristpage04021029-1
    journal lastpage04021029-10
    page10
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian