YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pipeline Construction Cost Forecasting Using Multivariate Time Series Methods

    Source: Journal of Pipeline Systems Engineering and Practice:;2021:;Volume ( 012 ):;issue: 003::page 04021026-1
    Author:
    Sooin Kim
    ,
    Bahram Abediniangerabi
    ,
    Mohsen Shahandashti
    DOI: 10.1061/(ASCE)PS.1949-1204.0000553
    Publisher: ASCE
    Abstract: Pipe material and labor costs constitute about 70% of pipeline construction costs. Pipe and labor costs are subject to considerable fluctuations over time. These fluctuations are problematic for cost estimation and bid preparation in pipeline projects, which are mostly large and long-term projects. The accurate prediction of pipe and labor costs is invaluable for cost estimators to prepare accurate bids and manage the cost contingencies. However, the existing literature does not take advantage of the leading indicators of pipeline construction cost time series to accurately forecast cost fluctuations in pipeline projects. The objective of this research is to identify the leading indicators of pipeline construction costs and develop multivariate time series models for forecasting cost fluctuations in pipeline projects. Nineteen potential leading indicators of pipe and labor costs were initially selected based on a comprehensive review of construction cost forecasting literature. The leading indicators were identified from this pool of potential leading indicators based on unit root tests and Granger causality tests. Multivariate time series models were developed based on the results of cointegration tests. Vector error correction (VEC) models were developed for the cointegrated variables, while vector autoregressive (VAR) models were developed for the non-cointegrated variables. Since multivariate time series models include information from the identified leading indicators, multivariate time series models are often expected to deliver more accurate forecasts than univariate time series models. The forecasting accuracies of multivariate time series models were compared with those of univariate time series models based on three common error measures: mean absolute prediction error (MAPE), root-mean-squared error (RMSE), and mean average error (MAE). The results show that multivariate time series models outperform univariate models for forecasting cost fluctuations in pipeline projects. The findings of this research contribute to the state of knowledge by identifying leading indicators of pipe and labor costs and developing multivariate time series models to forecast them. The multivariate time series models with leading indicators are more accurate than univariate models for forecasting cost fluctuations in pipeline projects. It is expected that the proposed multivariate time series forecasting models contribute to the enhancement of the theory and practice of pipeline construction cost forecasting and help cost engineers and investment planners to prepare more accurate bids, cost estimates, and budgets for pipeline projects.
    • Download: (856.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pipeline Construction Cost Forecasting Using Multivariate Time Series Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270218
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorSooin Kim
    contributor authorBahram Abediniangerabi
    contributor authorMohsen Shahandashti
    date accessioned2022-01-31T23:42:48Z
    date available2022-01-31T23:42:48Z
    date issued8/1/2021
    identifier other%28ASCE%29PS.1949-1204.0000553.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270218
    description abstractPipe material and labor costs constitute about 70% of pipeline construction costs. Pipe and labor costs are subject to considerable fluctuations over time. These fluctuations are problematic for cost estimation and bid preparation in pipeline projects, which are mostly large and long-term projects. The accurate prediction of pipe and labor costs is invaluable for cost estimators to prepare accurate bids and manage the cost contingencies. However, the existing literature does not take advantage of the leading indicators of pipeline construction cost time series to accurately forecast cost fluctuations in pipeline projects. The objective of this research is to identify the leading indicators of pipeline construction costs and develop multivariate time series models for forecasting cost fluctuations in pipeline projects. Nineteen potential leading indicators of pipe and labor costs were initially selected based on a comprehensive review of construction cost forecasting literature. The leading indicators were identified from this pool of potential leading indicators based on unit root tests and Granger causality tests. Multivariate time series models were developed based on the results of cointegration tests. Vector error correction (VEC) models were developed for the cointegrated variables, while vector autoregressive (VAR) models were developed for the non-cointegrated variables. Since multivariate time series models include information from the identified leading indicators, multivariate time series models are often expected to deliver more accurate forecasts than univariate time series models. The forecasting accuracies of multivariate time series models were compared with those of univariate time series models based on three common error measures: mean absolute prediction error (MAPE), root-mean-squared error (RMSE), and mean average error (MAE). The results show that multivariate time series models outperform univariate models for forecasting cost fluctuations in pipeline projects. The findings of this research contribute to the state of knowledge by identifying leading indicators of pipe and labor costs and developing multivariate time series models to forecast them. The multivariate time series models with leading indicators are more accurate than univariate models for forecasting cost fluctuations in pipeline projects. It is expected that the proposed multivariate time series forecasting models contribute to the enhancement of the theory and practice of pipeline construction cost forecasting and help cost engineers and investment planners to prepare more accurate bids, cost estimates, and budgets for pipeline projects.
    publisherASCE
    titlePipeline Construction Cost Forecasting Using Multivariate Time Series Methods
    typeJournal Paper
    journal volume12
    journal issue3
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/(ASCE)PS.1949-1204.0000553
    journal fristpage04021026-1
    journal lastpage04021026-12
    page12
    treeJournal of Pipeline Systems Engineering and Practice:;2021:;Volume ( 012 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian