YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Analysis of Pipelines with Axial Walking and Lateral Buckling

    Source: Journal of Pipeline Systems Engineering and Practice:;2021:;Volume ( 012 ):;issue: 003::page 04021013-1
    Author:
    Xintong Hao
    ,
    Run Liu
    ,
    Chengfeng Li
    ,
    Zheng Yu
    DOI: 10.1061/(ASCE)PS.1949-1204.0000550
    Publisher: ASCE
    Abstract: A pipeline is prone to axial movement, called pipeline walking, under heat-up and cooldown cycles. The build-up of axial force along the pipeline can result in the phenomenon referred to as lateral buckling. Walking and lateral buckling can both influence pipeline movement performance and threaten the safety of pipeline systems. The numerical simulation method is adopted to study the pipeline movement laws under walking and buckling interactions. Walking and buckling interactions are classified into three types for different forms of seabed slopes, and corresponding mitigation methods are proposed. The effects of buckling number, route bend, sleeper spacing, and anchor position on the lateral displacement amplitude, axial displacement, and effective axial force (EAF) of the pipeline are analyzed. Criteria for the mitigation methods are proposed based on parameters such as the pipeline end expansion, buckling failure parameter, maximum anchor force, and minimum compressive EAF. The results show that the anchor position has a great influence on the intertransformation of pipeline buckling and walking. The difference in anchor force can reach 51.1% considering different anchor positions.
    • Download: (3.109Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Analysis of Pipelines with Axial Walking and Lateral Buckling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270215
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorXintong Hao
    contributor authorRun Liu
    contributor authorChengfeng Li
    contributor authorZheng Yu
    date accessioned2022-01-31T23:42:42Z
    date available2022-01-31T23:42:42Z
    date issued8/1/2021
    identifier other%28ASCE%29PS.1949-1204.0000550.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270215
    description abstractA pipeline is prone to axial movement, called pipeline walking, under heat-up and cooldown cycles. The build-up of axial force along the pipeline can result in the phenomenon referred to as lateral buckling. Walking and lateral buckling can both influence pipeline movement performance and threaten the safety of pipeline systems. The numerical simulation method is adopted to study the pipeline movement laws under walking and buckling interactions. Walking and buckling interactions are classified into three types for different forms of seabed slopes, and corresponding mitigation methods are proposed. The effects of buckling number, route bend, sleeper spacing, and anchor position on the lateral displacement amplitude, axial displacement, and effective axial force (EAF) of the pipeline are analyzed. Criteria for the mitigation methods are proposed based on parameters such as the pipeline end expansion, buckling failure parameter, maximum anchor force, and minimum compressive EAF. The results show that the anchor position has a great influence on the intertransformation of pipeline buckling and walking. The difference in anchor force can reach 51.1% considering different anchor positions.
    publisherASCE
    titleFinite-Element Analysis of Pipelines with Axial Walking and Lateral Buckling
    typeJournal Paper
    journal volume12
    journal issue3
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/(ASCE)PS.1949-1204.0000550
    journal fristpage04021013-1
    journal lastpage04021013-13
    page13
    treeJournal of Pipeline Systems Engineering and Practice:;2021:;Volume ( 012 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian