YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind Flow Characteristics of Multivortex Tornadoes

    Source: Natural Hazards Review:;2021:;Volume ( 022 ):;issue: 003::page 04021015-1
    Author:
    Yi Zhao
    ,
    Guirong (Grace) Yan
    ,
    Ruoqiang Feng
    DOI: 10.1061/(ASCE)NH.1527-6996.0000462
    Publisher: ASCE
    Abstract: A multivortex tornado refers to a tornado that contains two or more small subvortices in the wind field. Due to the presence of multiple vortices, this type of tornado is likely to be more dangerous and destructive than single-vortex tornadoes. To understand the action of the multivortex tornado on civil structures, the wind flow characteristics are investigated and compared with those of single-vortex tornadoes, by using computational fluid dynamics (CFD) simulations. The results show that the inner flow structure of a multivortex tornado is completely different from that of a single-vortex tornado. First, a multivortex tornado possesses more than one subvortex in the domain around the core radius of the main vortex, and each subvortex flows together with the main vortex while rotating around its own center. Second, the wind flow of a multivortex tornado is more turbulent than a single-vortex tornado, which may lead to significant dynamic responses in some types of civil structures. Third, the maximum negative pressure occurs at the center of each subvortex instead of the center of the main vortex, which means that the largest negative pressure and highest wind speed occur at the same location. This unique feature in the multivortex tornado leads to different worst loading scenarios from single-vortex tornadoes and the worst-case scenario might be the combination of high tangential velocity and high negative pressure around the core radius. Fourth, for a multivortex tornado, the difference between instantaneous values and space-averaged values of parameters is remarkable. Thus, the space-averaged values should be carefully used for determining design tornadic wind loads for civil structures.
    • Download: (5.383Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind Flow Characteristics of Multivortex Tornadoes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270166
    Collections
    • Natural Hazards Review

    Show full item record

    contributor authorYi Zhao
    contributor authorGuirong (Grace) Yan
    contributor authorRuoqiang Feng
    date accessioned2022-01-31T23:41:03Z
    date available2022-01-31T23:41:03Z
    date issued8/1/2021
    identifier other%28ASCE%29NH.1527-6996.0000462.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270166
    description abstractA multivortex tornado refers to a tornado that contains two or more small subvortices in the wind field. Due to the presence of multiple vortices, this type of tornado is likely to be more dangerous and destructive than single-vortex tornadoes. To understand the action of the multivortex tornado on civil structures, the wind flow characteristics are investigated and compared with those of single-vortex tornadoes, by using computational fluid dynamics (CFD) simulations. The results show that the inner flow structure of a multivortex tornado is completely different from that of a single-vortex tornado. First, a multivortex tornado possesses more than one subvortex in the domain around the core radius of the main vortex, and each subvortex flows together with the main vortex while rotating around its own center. Second, the wind flow of a multivortex tornado is more turbulent than a single-vortex tornado, which may lead to significant dynamic responses in some types of civil structures. Third, the maximum negative pressure occurs at the center of each subvortex instead of the center of the main vortex, which means that the largest negative pressure and highest wind speed occur at the same location. This unique feature in the multivortex tornado leads to different worst loading scenarios from single-vortex tornadoes and the worst-case scenario might be the combination of high tangential velocity and high negative pressure around the core radius. Fourth, for a multivortex tornado, the difference between instantaneous values and space-averaged values of parameters is remarkable. Thus, the space-averaged values should be carefully used for determining design tornadic wind loads for civil structures.
    publisherASCE
    titleWind Flow Characteristics of Multivortex Tornadoes
    typeJournal Paper
    journal volume22
    journal issue3
    journal titleNatural Hazards Review
    identifier doi10.1061/(ASCE)NH.1527-6996.0000462
    journal fristpage04021015-1
    journal lastpage04021015-18
    page18
    treeNatural Hazards Review:;2021:;Volume ( 022 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian