YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear and Hydraulic Properties of Compost-Amended Topsoils for Use on Highway Slopes

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 008::page 04021192-1
    Author:
    A. Okan Duzgun
    ,
    Mustafa Hatipoglu
    ,
    Ahmet H. Aydilek
    DOI: 10.1061/(ASCE)MT.1943-5533.0003797
    Publisher: ASCE
    Abstract: The amount of municipal solid waste (MSW) generated in the US increases every year, and about 30% of the MSW generated is either recyclable or compostable. Utilization of compost-amended topsoils as a vegetative layer on highway slopes contributes to large-volume beneficial reuse of these materials. This study examines the shear and hydraulic properties of two types of composts, biosolids and leaf compost, and their blends with a topsoil for their potential use on highway slopes. Direct shear and consolidated-undrained triaxial shear tests were performed to obtain the shear strength parameters. Flexible-wall hydraulic conductivity tests and unsaturated hydraulic tests were performed to evaluate the saturated and unsaturated hydraulic behavior of the materials, respectively. Compost addition resulted in an increase in effective friction angle, whereas modest changes were observed in effective cohesion, total cohesion, and total friction angle of the topsoil. Two shape parameters determined via digital image analysis, angularity and relative form of 2-dimensional images, correlated well with the measured effective friction angles of the materials tested. Compost treatment resulted in an increase in saturated hydraulic conductivity and the plant-available water content. Unsaturated hydraulic conductivities of all materials were comparable at the matric potential of field capacity (10 kPa), and the compost-amended topsoils experienced 1–3 orders of decrease in their unsaturated hydraulic conductivities during the drying process.
    • Download: (1.284Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear and Hydraulic Properties of Compost-Amended Topsoils for Use on Highway Slopes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270101
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorA. Okan Duzgun
    contributor authorMustafa Hatipoglu
    contributor authorAhmet H. Aydilek
    date accessioned2022-01-31T23:39:02Z
    date available2022-01-31T23:39:02Z
    date issued8/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003797.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270101
    description abstractThe amount of municipal solid waste (MSW) generated in the US increases every year, and about 30% of the MSW generated is either recyclable or compostable. Utilization of compost-amended topsoils as a vegetative layer on highway slopes contributes to large-volume beneficial reuse of these materials. This study examines the shear and hydraulic properties of two types of composts, biosolids and leaf compost, and their blends with a topsoil for their potential use on highway slopes. Direct shear and consolidated-undrained triaxial shear tests were performed to obtain the shear strength parameters. Flexible-wall hydraulic conductivity tests and unsaturated hydraulic tests were performed to evaluate the saturated and unsaturated hydraulic behavior of the materials, respectively. Compost addition resulted in an increase in effective friction angle, whereas modest changes were observed in effective cohesion, total cohesion, and total friction angle of the topsoil. Two shape parameters determined via digital image analysis, angularity and relative form of 2-dimensional images, correlated well with the measured effective friction angles of the materials tested. Compost treatment resulted in an increase in saturated hydraulic conductivity and the plant-available water content. Unsaturated hydraulic conductivities of all materials were comparable at the matric potential of field capacity (10 kPa), and the compost-amended topsoils experienced 1–3 orders of decrease in their unsaturated hydraulic conductivities during the drying process.
    publisherASCE
    titleShear and Hydraulic Properties of Compost-Amended Topsoils for Use on Highway Slopes
    typeJournal Paper
    journal volume33
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003797
    journal fristpage04021192-1
    journal lastpage04021192-15
    page15
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian