YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Corrosion-Induced Cracking of Concrete Considering Rust Penetration into Cracks

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 008::page 04021183-1
    Author:
    Licheng Wang
    ,
    Yongqin Liang
    ,
    Tamon Ueda
    DOI: 10.1061/(ASCE)MT.1943-5533.0003778
    Publisher: ASCE
    Abstract: Evaluation of the concrete cracking induced by rebar corrosion is necessary for accurately clarifying the durability and predicting the service life of reinforced concrete (RC) structures. The fact that rust penetration into cracks might decrease corrosion expansion has been realized but not sufficiently investigated. In this paper, a numerical approach in terms of the mesoscopic structure of concrete is used to simulate the corrosion-induced concrete cracking, and the lattice network model to account for rust penetration into cracks is developed by assuming that the movement of rust is driven by moisture convection. The total rust amount is calculated based on Faraday’s law, and the rust expansion is transformed to a radial displacement boundary condition for both uniform and nonuniform conditions. Rust penetration is assumed to be a convection process governed by Darcy’s law. The proposed model is confirmed by comparing cracking pattern, corrosion pressure, surface crack width, mass ratio of penetrated rust to total rust (ΔWpe/ΔWtotal), and volume ratio of cracks occupied by rust to total cracks (Vrustcrack/Vcracktotal) with available experimental and numerical results. It is found that the distribution and the amount of penetrated rust are closely related to the volume of cracks and the connection of crack networks. Besides, through sensitivity analysis of influencing factors for rust penetration, it is found that a higher dissolved degree of rust in moisture induces a higher ΔWpe/ΔWtotal, but it doesn’t influence Vrustcrack/Vcracktotal. A larger relative water content at the concrete-steel interface will induce higher ΔWpe/ΔWtotal and Vrustcrack/Vcracktotal, while the initial relative water content in concrete has no significant difference on either ΔWpe/ΔWtotal or Vrustcrack/Vcracktotal.
    • Download: (2.075Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Corrosion-Induced Cracking of Concrete Considering Rust Penetration into Cracks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270083
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLicheng Wang
    contributor authorYongqin Liang
    contributor authorTamon Ueda
    date accessioned2022-01-31T23:38:29Z
    date available2022-01-31T23:38:29Z
    date issued8/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003778.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270083
    description abstractEvaluation of the concrete cracking induced by rebar corrosion is necessary for accurately clarifying the durability and predicting the service life of reinforced concrete (RC) structures. The fact that rust penetration into cracks might decrease corrosion expansion has been realized but not sufficiently investigated. In this paper, a numerical approach in terms of the mesoscopic structure of concrete is used to simulate the corrosion-induced concrete cracking, and the lattice network model to account for rust penetration into cracks is developed by assuming that the movement of rust is driven by moisture convection. The total rust amount is calculated based on Faraday’s law, and the rust expansion is transformed to a radial displacement boundary condition for both uniform and nonuniform conditions. Rust penetration is assumed to be a convection process governed by Darcy’s law. The proposed model is confirmed by comparing cracking pattern, corrosion pressure, surface crack width, mass ratio of penetrated rust to total rust (ΔWpe/ΔWtotal), and volume ratio of cracks occupied by rust to total cracks (Vrustcrack/Vcracktotal) with available experimental and numerical results. It is found that the distribution and the amount of penetrated rust are closely related to the volume of cracks and the connection of crack networks. Besides, through sensitivity analysis of influencing factors for rust penetration, it is found that a higher dissolved degree of rust in moisture induces a higher ΔWpe/ΔWtotal, but it doesn’t influence Vrustcrack/Vcracktotal. A larger relative water content at the concrete-steel interface will induce higher ΔWpe/ΔWtotal and Vrustcrack/Vcracktotal, while the initial relative water content in concrete has no significant difference on either ΔWpe/ΔWtotal or Vrustcrack/Vcracktotal.
    publisherASCE
    titleNumerical Simulation of Corrosion-Induced Cracking of Concrete Considering Rust Penetration into Cracks
    typeJournal Paper
    journal volume33
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003778
    journal fristpage04021183-1
    journal lastpage04021183-15
    page15
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian