YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Assessment of Welded Connections in I-Girder Composite High-Speed Railway Bridges

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 003::page 04021004-1
    Author:
    Ali Etemadi
    ,
    Huseyin Saglik
    DOI: 10.1061/(ASCE)BE.1943-5592.0001685
    Publisher: ASCE
    Abstract: The determination of the dynamic performance of a high-speed (HS) railway bridge is an ever-increasingly topical matter in public transportation networks owing to the broad establishment of ongoing HS railway transportation networks and the implementation of conventional networks for superior operational vehicle velocities. This paper examines the fatigue performance of a welded gusset plate connection of a composite steel I-girder railway bridge under trains moving within a certain range of velocities. The global three-dimensional finite element models (FEMs) are applied to examine the dynamic response of the I-girder composite steel-concrete railway bridge. The natural frequencies of the numerical model of bridge are verified using ambient vibration test results. A local three-dimensional FEM is generated in accordance with critical welded gusset plate connection using the ABAQUS platform. The local submodel is generated congruent with displacement field interpolation. The fatigue performance of a welded joint zone considering critical stress accumulation regions is determined by the hot-spot stress method under resonance conditions due to train passage with varying velocities. Stress cycles are extracted by taking real traffic spectra into account. Fatigue damage is calculated by using Palmgren-Miner’s rule and the rain-flow counting method. The outcomes demonstrate that the bridge is not vulnerable to the forthcoming fatigue failure mode.
    • Download: (2.636Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Assessment of Welded Connections in I-Girder Composite High-Speed Railway Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4270035
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorAli Etemadi
    contributor authorHuseyin Saglik
    date accessioned2022-01-31T23:36:36Z
    date available2022-01-31T23:36:36Z
    date issued3/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001685.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270035
    description abstractThe determination of the dynamic performance of a high-speed (HS) railway bridge is an ever-increasingly topical matter in public transportation networks owing to the broad establishment of ongoing HS railway transportation networks and the implementation of conventional networks for superior operational vehicle velocities. This paper examines the fatigue performance of a welded gusset plate connection of a composite steel I-girder railway bridge under trains moving within a certain range of velocities. The global three-dimensional finite element models (FEMs) are applied to examine the dynamic response of the I-girder composite steel-concrete railway bridge. The natural frequencies of the numerical model of bridge are verified using ambient vibration test results. A local three-dimensional FEM is generated in accordance with critical welded gusset plate connection using the ABAQUS platform. The local submodel is generated congruent with displacement field interpolation. The fatigue performance of a welded joint zone considering critical stress accumulation regions is determined by the hot-spot stress method under resonance conditions due to train passage with varying velocities. Stress cycles are extracted by taking real traffic spectra into account. Fatigue damage is calculated by using Palmgren-Miner’s rule and the rain-flow counting method. The outcomes demonstrate that the bridge is not vulnerable to the forthcoming fatigue failure mode.
    publisherASCE
    titleFatigue Assessment of Welded Connections in I-Girder Composite High-Speed Railway Bridges
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001685
    journal fristpage04021004-1
    journal lastpage04021004-12
    page12
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian