YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Properties of High-Modulus Asphalt Concrete Containing Recycled Asphalt Pavement: A Parametric Study

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 005::page 04021056-1
    Author:
    Junqing Zhu
    ,
    Tao Ma
    ,
    Hao Cheng
    ,
    Tailin Li
    ,
    Jikai Fu
    DOI: 10.1061/(ASCE)MT.1943-5533.0003678
    Publisher: ASCE
    Abstract: The recycling of asphalt pavement is a widespread practice around the world owing to its significant social, economic, and environmental advantages. High-modulus asphalt concrete (HMAC) possesses excellent rutting resistance and has received increased attention around the world. While many studies have been conducted on the performance of hot mix asphalt (HMA) containing reclaimed asphalt pavement (RAP), gaps remain in knowledge about producing HMAC containing RAP. This paper aims to investigate the performance of HMAC containing high percentages of RAP by conducting parametric laboratory tests. Design factors, including aggregate gradation, asphalt binder content, recycling agent dosage, and asphalt binder type, are evaluated in the laboratory. Tests conducted include dynamic modulus test, Marshall immersion test, modified Lottman test, three-point bending test, and rutting test. A modified regeneration method with adjusted mixing sequence is adopted to produce a mixture. It was found that low-penetration virgin-grade asphalt binder could produce good-quality HMA, though low-temperature cracking resistance remains a problem. Adjusting aggregate gradation and increasing asphalt binder content could improve its overall performance but not low-temperature cracking resistance. Increasing the dosage of aromatic extract recycling agent could improve HMA’s low-temperature cracking resistance, and a maximum dosage of 6% was proposed. Increasing the penetration grade of virgin asphalt binder with the addition of high-modulus additive could significantly improve its low-temperature and overall performance.
    • Download: (626.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Properties of High-Modulus Asphalt Concrete Containing Recycled Asphalt Pavement: A Parametric Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269984
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJunqing Zhu
    contributor authorTao Ma
    contributor authorHao Cheng
    contributor authorTailin Li
    contributor authorJikai Fu
    date accessioned2022-01-31T23:34:55Z
    date available2022-01-31T23:34:55Z
    date issued5/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003678.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269984
    description abstractThe recycling of asphalt pavement is a widespread practice around the world owing to its significant social, economic, and environmental advantages. High-modulus asphalt concrete (HMAC) possesses excellent rutting resistance and has received increased attention around the world. While many studies have been conducted on the performance of hot mix asphalt (HMA) containing reclaimed asphalt pavement (RAP), gaps remain in knowledge about producing HMAC containing RAP. This paper aims to investigate the performance of HMAC containing high percentages of RAP by conducting parametric laboratory tests. Design factors, including aggregate gradation, asphalt binder content, recycling agent dosage, and asphalt binder type, are evaluated in the laboratory. Tests conducted include dynamic modulus test, Marshall immersion test, modified Lottman test, three-point bending test, and rutting test. A modified regeneration method with adjusted mixing sequence is adopted to produce a mixture. It was found that low-penetration virgin-grade asphalt binder could produce good-quality HMA, though low-temperature cracking resistance remains a problem. Adjusting aggregate gradation and increasing asphalt binder content could improve its overall performance but not low-temperature cracking resistance. Increasing the dosage of aromatic extract recycling agent could improve HMA’s low-temperature cracking resistance, and a maximum dosage of 6% was proposed. Increasing the penetration grade of virgin asphalt binder with the addition of high-modulus additive could significantly improve its low-temperature and overall performance.
    publisherASCE
    titleMechanical Properties of High-Modulus Asphalt Concrete Containing Recycled Asphalt Pavement: A Parametric Study
    typeJournal Paper
    journal volume33
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003678
    journal fristpage04021056-1
    journal lastpage04021056-9
    page9
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian