YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interactions between Organic Chelation Agents and Ions in Seawater for Accelerating Self-Healing of Cracks in Cement Paste

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 004::page 04021036-1
    Author:
    Hao Liu
    ,
    Haoliang Huang
    ,
    Xintong Wu
    ,
    Kai Wu
    ,
    Jie Hu
    ,
    Jiangxiong Wei
    ,
    Qijun Yu
    DOI: 10.1061/(ASCE)MT.1943-5533.0003639
    Publisher: ASCE
    Abstract: To improve the durability of cracked concrete structures in a marine environment by self-healing of cracks, the efficiency and speed of self-healing need to be increased. In this study, the interactions between organic chelation agents, i.e., tetrasodium ethylenediaminetetraacetic acid (EDTA-4Na), triethanolamine (TEA), and sodium hexametaphosphate (SHMP), and ions in seawater for accelerating crack self-healing were investigated. After self-healing for 1 day, the closure ratio of cracks of an initial width of 400  μm increased from 5% to 80%, 65%, and 90% when 1.5% (by weight of cement) EDTA-4Na, SHMP, and TEA were admixed, respectively. However, the distribution of self-healing products in surface cracks of specimens with organic chelation agents was nonuniform in the early stages of healing, resulting in the large scatter—in terms of the standard deviation and range—of the values of the crack closure ratio. As the self-healing products gradually formed and accumulated in surface cracks, the standard deviation and range gradually decreased. Furthermore, in specimens with 1.5% triethanolamine, after seawater immersion for 1 day, a thin about 250-μm-thick layer of Mg(OH)2 formed at the crack mouths. During self-healing for 28 days, this thin layer extended inward up to a depth of 3 mm. To investigate the accelerator mechanism, the mineralogy of the self-healing products was characterized. When EDTA-4Na and SHMP were used, the main minerals were portlandite, brucite, aragonite, and calcite, while there was no portlandite when TEA was used.
    • Download: (2.538Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interactions between Organic Chelation Agents and Ions in Seawater for Accelerating Self-Healing of Cracks in Cement Paste

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269944
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHao Liu
    contributor authorHaoliang Huang
    contributor authorXintong Wu
    contributor authorKai Wu
    contributor authorJie Hu
    contributor authorJiangxiong Wei
    contributor authorQijun Yu
    date accessioned2022-01-31T23:33:41Z
    date available2022-01-31T23:33:41Z
    date issued4/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003639.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269944
    description abstractTo improve the durability of cracked concrete structures in a marine environment by self-healing of cracks, the efficiency and speed of self-healing need to be increased. In this study, the interactions between organic chelation agents, i.e., tetrasodium ethylenediaminetetraacetic acid (EDTA-4Na), triethanolamine (TEA), and sodium hexametaphosphate (SHMP), and ions in seawater for accelerating crack self-healing were investigated. After self-healing for 1 day, the closure ratio of cracks of an initial width of 400  μm increased from 5% to 80%, 65%, and 90% when 1.5% (by weight of cement) EDTA-4Na, SHMP, and TEA were admixed, respectively. However, the distribution of self-healing products in surface cracks of specimens with organic chelation agents was nonuniform in the early stages of healing, resulting in the large scatter—in terms of the standard deviation and range—of the values of the crack closure ratio. As the self-healing products gradually formed and accumulated in surface cracks, the standard deviation and range gradually decreased. Furthermore, in specimens with 1.5% triethanolamine, after seawater immersion for 1 day, a thin about 250-μm-thick layer of Mg(OH)2 formed at the crack mouths. During self-healing for 28 days, this thin layer extended inward up to a depth of 3 mm. To investigate the accelerator mechanism, the mineralogy of the self-healing products was characterized. When EDTA-4Na and SHMP were used, the main minerals were portlandite, brucite, aragonite, and calcite, while there was no portlandite when TEA was used.
    publisherASCE
    titleInteractions between Organic Chelation Agents and Ions in Seawater for Accelerating Self-Healing of Cracks in Cement Paste
    typeJournal Paper
    journal volume33
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003639
    journal fristpage04021036-1
    journal lastpage04021036-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian