YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Curing Age on the Microstructure and Hydration Behavior of Oil Well Cement Paste Cured at High Temperature

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 003::page 04021006-1
    Author:
    Mingliang Zhang
    ,
    Jiyun Shen
    ,
    Rongwei Yang
    ,
    Hongfei Ji
    ,
    Jiadi Ding
    DOI: 10.1061/(ASCE)MT.1943-5533.0003624
    Publisher: ASCE
    Abstract: With the extensive increase in exploitation of shale gas/oil, the mechanical/physical properties of oil well cement paste (OWCP) are paid special attention to. The mechanical and physical properties of OWCP is believed to be closely related to its microstructure and hydration behaviors. Both microstructure and hydration behaviors of OWCP cured at high temperature evolve with curing age. Taking advantage of multiple techniques, this study devotes itself to investigating the impact of curing age on the evolution of microstructure and hydration behaviors of OWCP cured at 80°C. The results show that both the capillary pore space and porosity decreased with curing age, while the gel porosity and specific surface area increased with curing age; Ca/Si ratio of calcium silicate hydrate (C─ S─ H) decreased fast during the first 3-day curing age, and then it is maintained around 1.82 in the following curing age; both evolutions of degree of hydration and chemical shrinkage with curing age obey the Avrami-type exponential equation; and the porosity of OWCP measured through mercury intrusion porosimetry correlates linearly with gel/space ratio as does the relationship between the degree of hydration and total amount of portlaindite determined by thermogravimetry-differential thermal analysis (TG-DTA), and both linear relationships are independent of curing temperature.
    • Download: (4.968Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Curing Age on the Microstructure and Hydration Behavior of Oil Well Cement Paste Cured at High Temperature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269929
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMingliang Zhang
    contributor authorJiyun Shen
    contributor authorRongwei Yang
    contributor authorHongfei Ji
    contributor authorJiadi Ding
    date accessioned2022-01-31T23:33:14Z
    date available2022-01-31T23:33:14Z
    date issued3/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003624.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269929
    description abstractWith the extensive increase in exploitation of shale gas/oil, the mechanical/physical properties of oil well cement paste (OWCP) are paid special attention to. The mechanical and physical properties of OWCP is believed to be closely related to its microstructure and hydration behaviors. Both microstructure and hydration behaviors of OWCP cured at high temperature evolve with curing age. Taking advantage of multiple techniques, this study devotes itself to investigating the impact of curing age on the evolution of microstructure and hydration behaviors of OWCP cured at 80°C. The results show that both the capillary pore space and porosity decreased with curing age, while the gel porosity and specific surface area increased with curing age; Ca/Si ratio of calcium silicate hydrate (C─ S─ H) decreased fast during the first 3-day curing age, and then it is maintained around 1.82 in the following curing age; both evolutions of degree of hydration and chemical shrinkage with curing age obey the Avrami-type exponential equation; and the porosity of OWCP measured through mercury intrusion porosimetry correlates linearly with gel/space ratio as does the relationship between the degree of hydration and total amount of portlaindite determined by thermogravimetry-differential thermal analysis (TG-DTA), and both linear relationships are independent of curing temperature.
    publisherASCE
    titleEffect of Curing Age on the Microstructure and Hydration Behavior of Oil Well Cement Paste Cured at High Temperature
    typeJournal Paper
    journal volume33
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003624
    journal fristpage04021006-1
    journal lastpage04021006-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian