YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Temperature Effect on Strength Properties of Polyurethane-Treated Sand

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 003::page 04020482-1
    Author:
    Zezhuo Song
    ,
    Jin Liu
    ,
    Yuxia Bai
    ,
    Xiao Shi
    ,
    Debi Prasanna Kanungo
    ,
    Changqing Qi
    ,
    Fan Bu
    DOI: 10.1061/(ASCE)MT.1943-5533.0003557
    Publisher: ASCE
    Abstract: This study focuses on the shear-strength properties of polyurethane polymer–treated sand stored at different temperatures. The triaxial test was performed at unconsolidated and undrained conditions on the specimen after 2 days of curing at room temperature and 1 day of curing at various temperatures. The effects of polymer content and dry density on strength properties were also considered. Polymer reinforcement mechanism was analyzed using scanning electron microscope images. Results indicated that the stress-strain relationship exhibited increasing ductility as temperature increased; the shear strength, energy absorption, and cohesion tended to decrease initially and then increase, while the friction angle remained stable at approximately 30°. The strength properties were in proportion to an increment in polymer content, and the trend became more apparent in a warmer environment. The shear strength, energy absorption, and cohesion increased up to about 2.4 MPa, 65 kPa, and 400 kPa, respectively. A higher dry density resulted in significant improvement in strength properties, except for a slight reduction in ductility, no matter the temperature. The presence of a polymer matrix formed a honeycomb and special net structures among sand via coating, bridging, and filling effects; hence, the treated sand turned into a whole system exhibiting favorable strength properties. This reinforcement effectiveness depended on polymer content, dry density, ambient temperature, soil grain, and polymer characteristics.
    • Download: (2.024Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Temperature Effect on Strength Properties of Polyurethane-Treated Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269883
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZezhuo Song
    contributor authorJin Liu
    contributor authorYuxia Bai
    contributor authorXiao Shi
    contributor authorDebi Prasanna Kanungo
    contributor authorChangqing Qi
    contributor authorFan Bu
    date accessioned2022-01-31T23:31:52Z
    date available2022-01-31T23:31:52Z
    date issued3/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003557.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269883
    description abstractThis study focuses on the shear-strength properties of polyurethane polymer–treated sand stored at different temperatures. The triaxial test was performed at unconsolidated and undrained conditions on the specimen after 2 days of curing at room temperature and 1 day of curing at various temperatures. The effects of polymer content and dry density on strength properties were also considered. Polymer reinforcement mechanism was analyzed using scanning electron microscope images. Results indicated that the stress-strain relationship exhibited increasing ductility as temperature increased; the shear strength, energy absorption, and cohesion tended to decrease initially and then increase, while the friction angle remained stable at approximately 30°. The strength properties were in proportion to an increment in polymer content, and the trend became more apparent in a warmer environment. The shear strength, energy absorption, and cohesion increased up to about 2.4 MPa, 65 kPa, and 400 kPa, respectively. A higher dry density resulted in significant improvement in strength properties, except for a slight reduction in ductility, no matter the temperature. The presence of a polymer matrix formed a honeycomb and special net structures among sand via coating, bridging, and filling effects; hence, the treated sand turned into a whole system exhibiting favorable strength properties. This reinforcement effectiveness depended on polymer content, dry density, ambient temperature, soil grain, and polymer characteristics.
    publisherASCE
    titleInvestigation of Temperature Effect on Strength Properties of Polyurethane-Treated Sand
    typeJournal Paper
    journal volume33
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003557
    journal fristpage04020482-1
    journal lastpage04020482-11
    page11
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian