YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Monte Carlo Simulation–Driven Approach for Construction Schedule Risk Inference

    Source: Journal of Management in Engineering:;2021:;Volume ( 037 ):;issue: 002::page 04020115-1
    Author:
    Long Chen
    ,
    Qiuchen Lu
    ,
    Shuai Li
    ,
    Wenjing He
    ,
    Jian Yang
    DOI: 10.1061/(ASCE)ME.1943-5479.0000884
    Publisher: ASCE
    Abstract: As the construction of infrastructures becomes increasingly complex, it has often been challenged by construction delay with enormous losses. The delivery of complex infrastructures provides a rich source of data for new opportunities to understand and address schedule issues. Based on these data, many efforts have been made to identify key construction schedule risks and predict the probability of risk occurrence. Bayesian network is one of the most useful tools for risk inference. However, there are still two obstacles preventing the Bayesian network from being adopted popularly in construction schedule risk management: (1) the development of directed acyclic graph (DAG) and associated conditional probability tables (CPTs); and (2) the lack of observation data to trigger risk inference as evidence at the planning stage. This research aims to develop a novel Bayesian Monte Carlo simulation–driven approach for construction schedule risk inference of infrastructures, where the Bayesian network model can be developed in a more convenient way and be used without observation data required. It first constructs the key risk network with key risks and links through network theory–based analysis. Then the DAG structure of a Bayesian network is developed based on the topological structure of key risk network using deep-first search (DFS) and adapted maximum-weight spanning tree (A-MWST) algorithms. The CPTs are further developed using the leaky-MAX model. Finally, the Bayesian Monte Carlo simulation–driven risk inference method is developed for predicting and quantifying the probability of construction schedule risk occurrence. A real infrastructure project was selected as a case study to verify this developed approach. The results show that the developed approach is more appropriate to deal with risk inference of infrastructures considering its reliability, convenience, and flexibility. This research contributes a new way to construction schedule risk management and provides a novel approach for quantifying and predicting risk occurrence probability.
    • Download: (1.267Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Monte Carlo Simulation–Driven Approach for Construction Schedule Risk Inference

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269810
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorLong Chen
    contributor authorQiuchen Lu
    contributor authorShuai Li
    contributor authorWenjing He
    contributor authorJian Yang
    date accessioned2022-01-31T23:29:19Z
    date available2022-01-31T23:29:19Z
    date issued3/1/2021
    identifier other%28ASCE%29ME.1943-5479.0000884.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269810
    description abstractAs the construction of infrastructures becomes increasingly complex, it has often been challenged by construction delay with enormous losses. The delivery of complex infrastructures provides a rich source of data for new opportunities to understand and address schedule issues. Based on these data, many efforts have been made to identify key construction schedule risks and predict the probability of risk occurrence. Bayesian network is one of the most useful tools for risk inference. However, there are still two obstacles preventing the Bayesian network from being adopted popularly in construction schedule risk management: (1) the development of directed acyclic graph (DAG) and associated conditional probability tables (CPTs); and (2) the lack of observation data to trigger risk inference as evidence at the planning stage. This research aims to develop a novel Bayesian Monte Carlo simulation–driven approach for construction schedule risk inference of infrastructures, where the Bayesian network model can be developed in a more convenient way and be used without observation data required. It first constructs the key risk network with key risks and links through network theory–based analysis. Then the DAG structure of a Bayesian network is developed based on the topological structure of key risk network using deep-first search (DFS) and adapted maximum-weight spanning tree (A-MWST) algorithms. The CPTs are further developed using the leaky-MAX model. Finally, the Bayesian Monte Carlo simulation–driven risk inference method is developed for predicting and quantifying the probability of construction schedule risk occurrence. A real infrastructure project was selected as a case study to verify this developed approach. The results show that the developed approach is more appropriate to deal with risk inference of infrastructures considering its reliability, convenience, and flexibility. This research contributes a new way to construction schedule risk management and provides a novel approach for quantifying and predicting risk occurrence probability.
    publisherASCE
    titleBayesian Monte Carlo Simulation–Driven Approach for Construction Schedule Risk Inference
    typeJournal Paper
    journal volume37
    journal issue2
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0000884
    journal fristpage04020115-1
    journal lastpage04020115-16
    page16
    treeJournal of Management in Engineering:;2021:;Volume ( 037 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian