YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Model Testing of Low-Gravity-Center Cable-Stayed Bridges with Different Girder-to-Tower Connections

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 001::page 04020112-1
    Author:
    Zhen Wang
    ,
    Wenxue Zhang
    ,
    Rong Fang
    ,
    Hanqing Zhao
    DOI: 10.1061/(ASCE)BE.1943-5592.0001649
    Publisher: ASCE
    Abstract: To investigate the seismic response characteristics of low-gravity-center cable-stayed bridges with twin towers, a simplified mechanics model was established based on the transmission path of the horizontal seismic inertial forces of the girder under earthquake excitation. The definition of a low-gravity-center cable-stayed bridge with twin towers was proposed. Two 1:75 scale models, a floating system (FS) cable-stayed bridge and a fixed-hinge system (HS) cable-stayed bridge, were fabricated, and shaking table tests were conducted. The results of these tests showed: (1) horizontal cracks appeared at the bottom and middle areas of the main tower in the Test Model FS, whereas diagonal cracks together with concrete spalling formed at the bottom area of the main tower and the bottom crossbeam in the Test Model HS; (2) the Test Model FS experienced a larger displacement response but a smaller acceleration response compared to the Test Model HS; and (3) the reinforcement strain response at the bottom of the main tower of the Test Model HS is smaller than those of the Test Model FS, which is in good agreement with the theoretical analysis of the low-gravity-center cable-stayed bridges. In general, the fixed-hinge system cable-stayed bridge can reduce the overall structural damage under strong earthquakes and is therefore suggested to be used in low-gravity-center cable-stayed bridges. The research results help to understand the failure characteristics of the cable-stayed bridges and to provide a reference for the seismic design of low-gravity-center cable-stayed bridges in practical engineering applications.
    • Download: (2.952Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Model Testing of Low-Gravity-Center Cable-Stayed Bridges with Different Girder-to-Tower Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269791
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZhen Wang
    contributor authorWenxue Zhang
    contributor authorRong Fang
    contributor authorHanqing Zhao
    date accessioned2022-01-31T23:28:43Z
    date available2022-01-31T23:28:43Z
    date issued1/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001649.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269791
    description abstractTo investigate the seismic response characteristics of low-gravity-center cable-stayed bridges with twin towers, a simplified mechanics model was established based on the transmission path of the horizontal seismic inertial forces of the girder under earthquake excitation. The definition of a low-gravity-center cable-stayed bridge with twin towers was proposed. Two 1:75 scale models, a floating system (FS) cable-stayed bridge and a fixed-hinge system (HS) cable-stayed bridge, were fabricated, and shaking table tests were conducted. The results of these tests showed: (1) horizontal cracks appeared at the bottom and middle areas of the main tower in the Test Model FS, whereas diagonal cracks together with concrete spalling formed at the bottom area of the main tower and the bottom crossbeam in the Test Model HS; (2) the Test Model FS experienced a larger displacement response but a smaller acceleration response compared to the Test Model HS; and (3) the reinforcement strain response at the bottom of the main tower of the Test Model HS is smaller than those of the Test Model FS, which is in good agreement with the theoretical analysis of the low-gravity-center cable-stayed bridges. In general, the fixed-hinge system cable-stayed bridge can reduce the overall structural damage under strong earthquakes and is therefore suggested to be used in low-gravity-center cable-stayed bridges. The research results help to understand the failure characteristics of the cable-stayed bridges and to provide a reference for the seismic design of low-gravity-center cable-stayed bridges in practical engineering applications.
    publisherASCE
    titleDynamic Model Testing of Low-Gravity-Center Cable-Stayed Bridges with Different Girder-to-Tower Connections
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001649
    journal fristpage04020112-1
    journal lastpage04020112-14
    page14
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian