YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Exploratory Study on Incorporating Glass FRP Reinforcement to Control Damage in Steel-Reinforced Concrete Bridge Pier Walls

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 002::page 04020116-1
    Author:
    Ahmed Arafa
    ,
    Nourhan Ahmed
    ,
    Ahmed Sabry Farghaly
    ,
    Omar Chaallal
    ,
    Brahim Benmokrane
    DOI: 10.1061/(ASCE)BE.1943-5592.0001648
    Publisher: ASCE
    Abstract: The need to demonstrate that a steel-reinforced concrete bridge pier wall resilient to strong earthquakes could be attained by the incorporation of glass fiber–reinforced polymer (GFRP) reinforcement has been brought to the fore by recent experimental results on GFRP-reinforced concrete bridge pier walls. The test results show that the GFRP bars assisted in crack recovery and the self-centering of walls between load reversals. Hence, GFRP bars could potentially be used to control the unrecoverable damage in steel-reinforced bridge pier walls after an earthquake. This study will use nonlinear finite element analysis (FEA) as a powerful tool to verify this expectation. A series of analyses will be implemented on concrete bridge pier walls reinforced with either steel or GFRP bars to demonstrate that the finite element (FE) procedure can provide quick and reliable simulation. The study is then extended to investigate the effect of using hybrid reinforcement through a comprehensive parametric study. Different configurations of GFRP bars are examined and compared with similar configurations of steel bars. The results show that hybrid reinforced bridge pier walls can undergo large displacements with minimal residual deformations. Nevertheless, a sensible selection of the GFRP bars location is necessary. The findings of this study could be considered as a fundamental step toward the development of code provisions for the use of hybrid GFRP/steel (GS) reinforcement in concrete bridge pier walls.
    • Download: (2.340Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Exploratory Study on Incorporating Glass FRP Reinforcement to Control Damage in Steel-Reinforced Concrete Bridge Pier Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269780
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorAhmed Arafa
    contributor authorNourhan Ahmed
    contributor authorAhmed Sabry Farghaly
    contributor authorOmar Chaallal
    contributor authorBrahim Benmokrane
    date accessioned2022-01-31T23:28:19Z
    date available2022-01-31T23:28:19Z
    date issued2/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001648.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269780
    description abstractThe need to demonstrate that a steel-reinforced concrete bridge pier wall resilient to strong earthquakes could be attained by the incorporation of glass fiber–reinforced polymer (GFRP) reinforcement has been brought to the fore by recent experimental results on GFRP-reinforced concrete bridge pier walls. The test results show that the GFRP bars assisted in crack recovery and the self-centering of walls between load reversals. Hence, GFRP bars could potentially be used to control the unrecoverable damage in steel-reinforced bridge pier walls after an earthquake. This study will use nonlinear finite element analysis (FEA) as a powerful tool to verify this expectation. A series of analyses will be implemented on concrete bridge pier walls reinforced with either steel or GFRP bars to demonstrate that the finite element (FE) procedure can provide quick and reliable simulation. The study is then extended to investigate the effect of using hybrid reinforcement through a comprehensive parametric study. Different configurations of GFRP bars are examined and compared with similar configurations of steel bars. The results show that hybrid reinforced bridge pier walls can undergo large displacements with minimal residual deformations. Nevertheless, a sensible selection of the GFRP bars location is necessary. The findings of this study could be considered as a fundamental step toward the development of code provisions for the use of hybrid GFRP/steel (GS) reinforcement in concrete bridge pier walls.
    publisherASCE
    titleExploratory Study on Incorporating Glass FRP Reinforcement to Control Damage in Steel-Reinforced Concrete Bridge Pier Walls
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001648
    journal fristpage04020116-1
    journal lastpage04020116-16
    page16
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian