YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of the Flow Characteristics and Noise Generation at the Wing–Wall Junction

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 005::page 04021054-1
    Author:
    Y. Ding
    ,
    T. Zhang
    ,
    T. F. Geyer
    ,
    C. M. de Silva
    ,
    C. J. Doolan
    ,
    D. J. Moreau
    DOI: 10.1061/(ASCE)AS.1943-5525.0001303
    Publisher: ASCE
    Abstract: This paper is concerned with the flow characteristics and noise generation at the finite wing–wall junction. To characterize junction flow noise, acoustic measurements were taken in the acoustic wind tunnel at the Brandenburg University of Technology in Cottbus, Germany, with a planar 47-microphone array at a chord-based Reynolds number (Rec) of 2.3×105. The wings used have an aspect ratio (AR) of 2 and six different section profiles with variations in camber and thickness. The results show that the junction noise dominates at the low-frequency range below 4 kHz (chord-based Strouhal number of Stc=5.6), which is particularly obvious for the symmetric wing. On the other hand, the addition of leading-edge bluntness and camber are found to have less of an influence on the junction noise spectra. Both symmetric and nonsymmetric wings near the stall angle exhibit a dramatic increase in the high-frequency junction noise content above 8 kHz (Stc=11.2), indicating the existence of a different junction noise mechanism. To provide insight into the junction flow, measurements of the mean streamwise total pressure field within the wing–wall junction were performed in the acoustic tunnel at the University of New South Wales for two wing ARs of 0.2 and 1.0 at Rec=2.6×105 and several angles of attack (AoA). The contour maps of the mean streamwise total pressure field indicate the existence of the horseshoe vortex around the wing and exhibit variations of the flow structure at different streamwise locations and AoA. Further, the AR influences the upwash and downwash near the junction due to the effect of the tip vortex. These competing effects are observed on different sides of the wing under different lifting conditions and AR. The relatively simple geometries of the test cases and the complex physics they create make this data set particularly valuable for validation of numerical simulations and models.
    • Download: (1.920Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of the Flow Characteristics and Noise Generation at the Wing–Wall Junction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269758
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorY. Ding
    contributor authorT. Zhang
    contributor authorT. F. Geyer
    contributor authorC. M. de Silva
    contributor authorC. J. Doolan
    contributor authorD. J. Moreau
    date accessioned2022-01-31T23:27:41Z
    date available2022-01-31T23:27:41Z
    date issued9/1/2021
    identifier other%28ASCE%29AS.1943-5525.0001303.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269758
    description abstractThis paper is concerned with the flow characteristics and noise generation at the finite wing–wall junction. To characterize junction flow noise, acoustic measurements were taken in the acoustic wind tunnel at the Brandenburg University of Technology in Cottbus, Germany, with a planar 47-microphone array at a chord-based Reynolds number (Rec) of 2.3×105. The wings used have an aspect ratio (AR) of 2 and six different section profiles with variations in camber and thickness. The results show that the junction noise dominates at the low-frequency range below 4 kHz (chord-based Strouhal number of Stc=5.6), which is particularly obvious for the symmetric wing. On the other hand, the addition of leading-edge bluntness and camber are found to have less of an influence on the junction noise spectra. Both symmetric and nonsymmetric wings near the stall angle exhibit a dramatic increase in the high-frequency junction noise content above 8 kHz (Stc=11.2), indicating the existence of a different junction noise mechanism. To provide insight into the junction flow, measurements of the mean streamwise total pressure field within the wing–wall junction were performed in the acoustic tunnel at the University of New South Wales for two wing ARs of 0.2 and 1.0 at Rec=2.6×105 and several angles of attack (AoA). The contour maps of the mean streamwise total pressure field indicate the existence of the horseshoe vortex around the wing and exhibit variations of the flow structure at different streamwise locations and AoA. Further, the AR influences the upwash and downwash near the junction due to the effect of the tip vortex. These competing effects are observed on different sides of the wing under different lifting conditions and AR. The relatively simple geometries of the test cases and the complex physics they create make this data set particularly valuable for validation of numerical simulations and models.
    publisherASCE
    titleExperimental Investigation of the Flow Characteristics and Noise Generation at the Wing–Wall Junction
    typeJournal Paper
    journal volume34
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001303
    journal fristpage04021054-1
    journal lastpage04021054-11
    page11
    treeJournal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian