YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model-Class Selection Using Clustering and Classification for Structural Identification and Prediction

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 001::page 04020051
    Author:
    Sai G. S. Pai
    ,
    Masoud Sanayei
    ,
    Ian F. C. Smith
    DOI: 10.1061/(ASCE)CP.1943-5487.0000932
    Publisher: ASCE
    Abstract: Structural identification using physics-based models and subsequent prediction have much potential to enhance civil infrastructure asset-management decision-making. Interpreting monitoring information in the presence of multiple uncertainty sources and systematic bias using a physics-based model is a computationally expensive task. The computational cost of this task is exponentially proportional to the number of model parameters updated using monitoring data. In this paper, a novel model-class selection method is proposed to obtain computationally optimal and identifiable model classes. Unlike traditional sensitivity methods for model-class selection, in the proposed method, model responses at sensor locations are clustered to identify underlying trends in model response datasets. K-means clustering is used to determine relevant clusters in the data. Cluster indices are then used as labels for classification. Support-vector machine classification using forward variable selection with sequential search is used to select model parameters that help classify trends in data. The result of the sequential search is a trade-off curve comparing classification error with number of parameters in the model class. This curve helps select a practical and near-optimal model class. The model-class selection method proposed in this paper is compared with linear regression-based sensitivity analysis using a full-scale bridge. Identification with model classes obtained using both methods for two sensor configurations suggests that the model-based clustering method helps select an identifiable and computationally efficient model class. The minimum remaining fatigue life of the bridge predicted using the updated model classes is 720 years and this represents fatigue-life extension of 10 times compared with design predictions prior to measurements. This approach provides good support for asset managers when they interpret measurement data.
    • Download: (1.377Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model-Class Selection Using Clustering and Classification for Structural Identification and Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269708
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorSai G. S. Pai
    contributor authorMasoud Sanayei
    contributor authorIan F. C. Smith
    date accessioned2022-01-30T22:50:01Z
    date available2022-01-30T22:50:01Z
    date issued1/1/2021
    identifier other(ASCE)CP.1943-5487.0000932.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269708
    description abstractStructural identification using physics-based models and subsequent prediction have much potential to enhance civil infrastructure asset-management decision-making. Interpreting monitoring information in the presence of multiple uncertainty sources and systematic bias using a physics-based model is a computationally expensive task. The computational cost of this task is exponentially proportional to the number of model parameters updated using monitoring data. In this paper, a novel model-class selection method is proposed to obtain computationally optimal and identifiable model classes. Unlike traditional sensitivity methods for model-class selection, in the proposed method, model responses at sensor locations are clustered to identify underlying trends in model response datasets. K-means clustering is used to determine relevant clusters in the data. Cluster indices are then used as labels for classification. Support-vector machine classification using forward variable selection with sequential search is used to select model parameters that help classify trends in data. The result of the sequential search is a trade-off curve comparing classification error with number of parameters in the model class. This curve helps select a practical and near-optimal model class. The model-class selection method proposed in this paper is compared with linear regression-based sensitivity analysis using a full-scale bridge. Identification with model classes obtained using both methods for two sensor configurations suggests that the model-based clustering method helps select an identifiable and computationally efficient model class. The minimum remaining fatigue life of the bridge predicted using the updated model classes is 720 years and this represents fatigue-life extension of 10 times compared with design predictions prior to measurements. This approach provides good support for asset managers when they interpret measurement data.
    publisherASCE
    titleModel-Class Selection Using Clustering and Classification for Structural Identification and Prediction
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000932
    journal fristpage04020051
    journal lastpage04020051-15
    page15
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian