YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting City-Level Construction Cost Index Using Linear Forecasting Models

    Source: Journal of Construction Engineering and Management:;2021:;Volume ( 147 ):;issue: 002::page 04020158
    Author:
    Chi-Young Choi
    ,
    Kyeong Rok Ryu
    ,
    Mohsen Shahandashti
    DOI: 10.1061/(ASCE)CO.1943-7862.0001973
    Publisher: ASCE
    Abstract: Because of the importance of budget planning and contract bidding, accurate prediction of future movements of the construction cost index (CCI) has been a crucial part of construction cost management. Despite the fact that construction costs can vary widely across locations with different market conditions and environments, the national CCI, the simple average of construction costs for 20 US metropolitan areas, has often been used to forecast CCIs across the nation. This study finds considerable differences across US cities in both the level and growth rates of CCIs and shows that using the national CCI for predicting city-level CCIs can cause nonnegligible forecast errors. Comparing four popular linear forecasting models, including standard autoregressive integrated moving average (ARIMA) models and a multivariate vector error correction model (VECM) drawn on monthly CCI data from January 1995 to December 2019, this study reveals that no single model is dominant in terms of the out-of-sample performance. If any leading indicator is available at the city level, however, it is recommended to choose between the ARIMA model based on the Bayesian information criterion (BIC) rule and the multivariate VECM augmented with the leading indicators. For the leading indicator in multivariate VECM, city consumer price index (CPI) works better than national CPI. In the absence of such leading indicators, it is recommended to use a parsimonious ARIMA model based on the BIC rule. The proposed approach is expected to help decision makers in the construction industry prepare more accurate budgets and biddings for regional construction projects.
    • Download: (1.130Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting City-Level Construction Cost Index Using Linear Forecasting Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269693
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorChi-Young Choi
    contributor authorKyeong Rok Ryu
    contributor authorMohsen Shahandashti
    date accessioned2022-01-30T22:49:36Z
    date available2022-01-30T22:49:36Z
    date issued2/1/2021
    identifier other(ASCE)CO.1943-7862.0001973.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269693
    description abstractBecause of the importance of budget planning and contract bidding, accurate prediction of future movements of the construction cost index (CCI) has been a crucial part of construction cost management. Despite the fact that construction costs can vary widely across locations with different market conditions and environments, the national CCI, the simple average of construction costs for 20 US metropolitan areas, has often been used to forecast CCIs across the nation. This study finds considerable differences across US cities in both the level and growth rates of CCIs and shows that using the national CCI for predicting city-level CCIs can cause nonnegligible forecast errors. Comparing four popular linear forecasting models, including standard autoregressive integrated moving average (ARIMA) models and a multivariate vector error correction model (VECM) drawn on monthly CCI data from January 1995 to December 2019, this study reveals that no single model is dominant in terms of the out-of-sample performance. If any leading indicator is available at the city level, however, it is recommended to choose between the ARIMA model based on the Bayesian information criterion (BIC) rule and the multivariate VECM augmented with the leading indicators. For the leading indicator in multivariate VECM, city consumer price index (CPI) works better than national CPI. In the absence of such leading indicators, it is recommended to use a parsimonious ARIMA model based on the BIC rule. The proposed approach is expected to help decision makers in the construction industry prepare more accurate budgets and biddings for regional construction projects.
    publisherASCE
    titlePredicting City-Level Construction Cost Index Using Linear Forecasting Models
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001973
    journal fristpage04020158
    journal lastpage04020158-12
    page12
    treeJournal of Construction Engineering and Management:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian