YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Integrated Water Systems: Water Distribution System, Household Water-Saving Scheme, and Sanitary Sewer Perspectives

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 002::page 04020102
    Author:
    Innocent Basupi
    DOI: 10.1061/(ASCE)WR.1943-5452.0001309
    Publisher: ASCE
    Abstract: An integrated design method that complements the increasing uptake of water-saving schemes (WSSs) is presented. WSSs may consist of water-saving fittings, appliances, rainwater-harvesting systems (RWHSs), and water-reuse schemes that provide the link between water distribution systems (WDSs) and sanitary sewers (SSs). The method developed here considers the interaction between WDSs, WSSs, and SSs to provide unified solutions. In this paper, a multiobjective optimization problem is formulated and solved considering three objectives, which are (1) minimization of the total cost incurred by implementing water system interventions, i.e., excluding the associated cost savings; (2) maximization of cost savings, which are benefits conferred by interventions; and (3) minimization of system water demand. The decision variables include conventional water network design interventions (i.e., addition of pipes) and the water-saving equipment at a household level. The main constraints include both WDS and SS hydraulic performances. The optimal trade-off solutions are obtained using nondominated sorting genetic algorithm optimization processes. This method was demonstrated in the realistic subsystem of the Tsholofelo Extension water and SS networks in Gaborone, Botswana. The results show that integrating and optimizing WDS, WSS, and SS designs would improve water security and lead to more sustainable water systems.
    • Download: (1.763Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Integrated Water Systems: Water Distribution System, Household Water-Saving Scheme, and Sanitary Sewer Perspectives

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269609
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorInnocent Basupi
    date accessioned2022-01-30T22:47:22Z
    date available2022-01-30T22:47:22Z
    date issued2/1/2021
    identifier other(ASCE)WR.1943-5452.0001309.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269609
    description abstractAn integrated design method that complements the increasing uptake of water-saving schemes (WSSs) is presented. WSSs may consist of water-saving fittings, appliances, rainwater-harvesting systems (RWHSs), and water-reuse schemes that provide the link between water distribution systems (WDSs) and sanitary sewers (SSs). The method developed here considers the interaction between WDSs, WSSs, and SSs to provide unified solutions. In this paper, a multiobjective optimization problem is formulated and solved considering three objectives, which are (1) minimization of the total cost incurred by implementing water system interventions, i.e., excluding the associated cost savings; (2) maximization of cost savings, which are benefits conferred by interventions; and (3) minimization of system water demand. The decision variables include conventional water network design interventions (i.e., addition of pipes) and the water-saving equipment at a household level. The main constraints include both WDS and SS hydraulic performances. The optimal trade-off solutions are obtained using nondominated sorting genetic algorithm optimization processes. This method was demonstrated in the realistic subsystem of the Tsholofelo Extension water and SS networks in Gaborone, Botswana. The results show that integrating and optimizing WDS, WSS, and SS designs would improve water security and lead to more sustainable water systems.
    publisherASCE
    titleDesign of Integrated Water Systems: Water Distribution System, Household Water-Saving Scheme, and Sanitary Sewer Perspectives
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001309
    journal fristpage04020102
    journal lastpage04020102-13
    page13
    treeJournal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian