YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advancing the Design of Resilient and Sustainable Buildings: An Integrated Life-Cycle Analysis

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 003::page 04020341
    Author:
    Karen Angeles
    ,
    Dimitrios Patsialis
    ,
    Alexandros A. Taflanidis
    ,
    Tracy L. Kijewski-Correa
    ,
    Aimee Buccellato
    ,
    Charles Vardeman
    DOI: 10.1061/(ASCE)ST.1943-541X.0002910
    Publisher: ASCE
    Abstract: A holistic evaluation of a building’s environmental impact must include a thorough accounting of both its operating and embodied energies, inclusive of the influence of hazard-induced damage and repairs. Unfortunately, these considerations are notoriously absent in today’s practice owing to a traditionally segmented approach to the design process that has perpetuated interoperability challenges between existing commercial tools. In response to this and other limitations of existing approaches, this paper offers an integrated life-cycle assessment (iLCA) that (1) considers the effects of site-specific climate and exposure to wind and seismic hazards on a building’s embodied and operating energy, (2) adopts an assembly-based approach to reveal the specific components influencing performance outcomes, (3) accommodates both risk-neutral and risk-adverse perspectives, and (4) addresses interoperability challenges that limit access to the data stored within commercial building information models. The resulting iLCA is partitioned into a sustainability workflow, with modules dedicated to embodied and operating energy, and a resilience workflow, sequencing modules for hazard characterization, structural response, damage, and repair/loss. A custom parser leverages semantic technologies to efficiently extract geometry and material information from the underlying data structures of Revit building information models; this parser ultimately supplies the required building data to each module. A unifying probabilistic framework is then adopted to quantify life-cycle performance, in terms of repair costs and total (embodied and operating) energy, with emphasis placed on expanding the statistical descriptions of performance to support both risk-neutral and risk-averse decision-making. The iLCA is applied to a case study office building at two sites to demonstrate the effects of climate and wind and seismic hazards on the performance of specific components over different service lives, inclusive of potential performance variability due to hazard exposure. The framework is further leveraged to examine how different sources of uncertainty, or assumptions surrounding the quantification of this uncertainty, impact life-cycle performance estimates.
    • Download: (863.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advancing the Design of Resilient and Sustainable Buildings: An Integrated Life-Cycle Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269579
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorKaren Angeles
    contributor authorDimitrios Patsialis
    contributor authorAlexandros A. Taflanidis
    contributor authorTracy L. Kijewski-Correa
    contributor authorAimee Buccellato
    contributor authorCharles Vardeman
    date accessioned2022-01-30T22:46:37Z
    date available2022-01-30T22:46:37Z
    date issued3/1/2021
    identifier other(ASCE)ST.1943-541X.0002910.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269579
    description abstractA holistic evaluation of a building’s environmental impact must include a thorough accounting of both its operating and embodied energies, inclusive of the influence of hazard-induced damage and repairs. Unfortunately, these considerations are notoriously absent in today’s practice owing to a traditionally segmented approach to the design process that has perpetuated interoperability challenges between existing commercial tools. In response to this and other limitations of existing approaches, this paper offers an integrated life-cycle assessment (iLCA) that (1) considers the effects of site-specific climate and exposure to wind and seismic hazards on a building’s embodied and operating energy, (2) adopts an assembly-based approach to reveal the specific components influencing performance outcomes, (3) accommodates both risk-neutral and risk-adverse perspectives, and (4) addresses interoperability challenges that limit access to the data stored within commercial building information models. The resulting iLCA is partitioned into a sustainability workflow, with modules dedicated to embodied and operating energy, and a resilience workflow, sequencing modules for hazard characterization, structural response, damage, and repair/loss. A custom parser leverages semantic technologies to efficiently extract geometry and material information from the underlying data structures of Revit building information models; this parser ultimately supplies the required building data to each module. A unifying probabilistic framework is then adopted to quantify life-cycle performance, in terms of repair costs and total (embodied and operating) energy, with emphasis placed on expanding the statistical descriptions of performance to support both risk-neutral and risk-averse decision-making. The iLCA is applied to a case study office building at two sites to demonstrate the effects of climate and wind and seismic hazards on the performance of specific components over different service lives, inclusive of potential performance variability due to hazard exposure. The framework is further leveraged to examine how different sources of uncertainty, or assumptions surrounding the quantification of this uncertainty, impact life-cycle performance estimates.
    publisherASCE
    titleAdvancing the Design of Resilient and Sustainable Buildings: An Integrated Life-Cycle Analysis
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002910
    journal fristpage04020341
    journal lastpage04020341-19
    page19
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian