YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reliability Analysis and Design Considerations for Exposed Column Base Plate Connections Subjected to Flexure and Axial Compression

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 002::page 04020328
    Author:
    Biao Song
    ,
    Carmine Galasso
    ,
    Amit Kanvinde
    DOI: 10.1061/(ASCE)ST.1943-541X.0002903
    Publisher: ASCE
    Abstract: Exposed column base plate (ECBP) connections are commonly used in steel moment resisting frames. Current approaches for their design are well-established from a mechanistic standpoint. However, the reliability of connections designed as per these approaches is not as well understood. A detailed reliability analysis of the prevalent approach in the United States is performed in this study by using 59 design scenarios from steel moment frames subjected to combinations of dead, live, wind, and seismic loads. The analysis is conducted through Monte Carlo sampling reflecting uncertainties in the loads, material properties, component geometry, as well as demand and capacity models for the various components (e.g., base plate, footing, anchor rods) of the connection. Results indicate that the current design approach leads to unacceptable and inconsistent probabilities of failure across the various components. This is attributed to: (1) the use of a resistance factor for the footing bearing stress that artificially alters flexural demands on the base plate, and (2) the calibration of resistance factors for the plate and anchors without appropriate consideration of variability in demands. Two alternative approaches are examined as prospective refinements to the current approach. One eliminates the resistance factor for the bearing stress when used to determine flexural demands in the base plate, while the other considers overall failure of the connection rather than failure of individual components within the connection. For both approaches, new resistance factors are calibrated to provide consistent and acceptable probabilities of failure across all limit states and all types of loading. Design and cost implications of these alternative approaches are summarized.
    • Download: (1.690Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reliability Analysis and Design Considerations for Exposed Column Base Plate Connections Subjected to Flexure and Axial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269576
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorBiao Song
    contributor authorCarmine Galasso
    contributor authorAmit Kanvinde
    date accessioned2022-01-30T22:46:33Z
    date available2022-01-30T22:46:33Z
    date issued2/1/2021
    identifier other(ASCE)ST.1943-541X.0002903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269576
    description abstractExposed column base plate (ECBP) connections are commonly used in steel moment resisting frames. Current approaches for their design are well-established from a mechanistic standpoint. However, the reliability of connections designed as per these approaches is not as well understood. A detailed reliability analysis of the prevalent approach in the United States is performed in this study by using 59 design scenarios from steel moment frames subjected to combinations of dead, live, wind, and seismic loads. The analysis is conducted through Monte Carlo sampling reflecting uncertainties in the loads, material properties, component geometry, as well as demand and capacity models for the various components (e.g., base plate, footing, anchor rods) of the connection. Results indicate that the current design approach leads to unacceptable and inconsistent probabilities of failure across the various components. This is attributed to: (1) the use of a resistance factor for the footing bearing stress that artificially alters flexural demands on the base plate, and (2) the calibration of resistance factors for the plate and anchors without appropriate consideration of variability in demands. Two alternative approaches are examined as prospective refinements to the current approach. One eliminates the resistance factor for the bearing stress when used to determine flexural demands in the base plate, while the other considers overall failure of the connection rather than failure of individual components within the connection. For both approaches, new resistance factors are calibrated to provide consistent and acceptable probabilities of failure across all limit states and all types of loading. Design and cost implications of these alternative approaches are summarized.
    publisherASCE
    titleReliability Analysis and Design Considerations for Exposed Column Base Plate Connections Subjected to Flexure and Axial Compression
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002903
    journal fristpage04020328
    journal lastpage04020328-14
    page14
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian