YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Component-Level Seismic Performance Assessment of Instrumented Super High-Rise Buildings under Bidirectional Long-Period Ground Motions

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 002::page 04020324
    Author:
    You-Lin Xu
    ,
    Rongpan Hu
    DOI: 10.1061/(ASCE)ST.1943-541X.0002894
    Publisher: ASCE
    Abstract: A detailed seismic performance assessment for super high-rise buildings is essential for decision-making on postearthquake repair, maintenance, and reoccupation. This paper proposes a probabilistic assessment framework for instrumented super high-rise buildings under bidirectional long-period ground motions in which the probabilities of key structural components experiencing different damage levels are assessed. The fragility curves of the key structural components are obtained by performing a nonlinear incremental dynamic analysis on the building model. The evolving mean values and variances of the structural responses are determined by using the Kalman smoothing algorithm based on the integrated optimal sensor placement and response reconstruction scheme. The extreme value distribution of the structural responses is obtained in terms of the Vanmarcke approximation and then incorporated with generated fragility curves to yield an estimation of the probabilistic damage states of the key structural components. The proposed framework is finally applied to a real super high-rise building, and the results manifest that the proposed framework provides a reliable way of estimating the safety and operability levels of the instrumented building after the earthquake event.
    • Download: (3.027Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Component-Level Seismic Performance Assessment of Instrumented Super High-Rise Buildings under Bidirectional Long-Period Ground Motions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269570
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorYou-Lin Xu
    contributor authorRongpan Hu
    date accessioned2022-01-30T22:46:19Z
    date available2022-01-30T22:46:19Z
    date issued2/1/2021
    identifier other(ASCE)ST.1943-541X.0002894.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269570
    description abstractA detailed seismic performance assessment for super high-rise buildings is essential for decision-making on postearthquake repair, maintenance, and reoccupation. This paper proposes a probabilistic assessment framework for instrumented super high-rise buildings under bidirectional long-period ground motions in which the probabilities of key structural components experiencing different damage levels are assessed. The fragility curves of the key structural components are obtained by performing a nonlinear incremental dynamic analysis on the building model. The evolving mean values and variances of the structural responses are determined by using the Kalman smoothing algorithm based on the integrated optimal sensor placement and response reconstruction scheme. The extreme value distribution of the structural responses is obtained in terms of the Vanmarcke approximation and then incorporated with generated fragility curves to yield an estimation of the probabilistic damage states of the key structural components. The proposed framework is finally applied to a real super high-rise building, and the results manifest that the proposed framework provides a reliable way of estimating the safety and operability levels of the instrumented building after the earthquake event.
    publisherASCE
    titleComponent-Level Seismic Performance Assessment of Instrumented Super High-Rise Buildings under Bidirectional Long-Period Ground Motions
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002894
    journal fristpage04020324
    journal lastpage04020324-17
    page17
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian