YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength and Reliability of Structural Steel Roofs Subjected to Ponding Loads

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 002::page 04020318
    Author:
    Mark D. Denavit
    ,
    Michael H. Scott
    DOI: 10.1061/(ASCE)ST.1943-541X.0002882
    Publisher: ASCE
    Abstract: Roof collapses due to ponding instability are among the most frequent structural failures. Although methods of design for other types of instability have evolved and improved with computational advances, the most commonly used method of assessing ponding instability has been updated minimally since it was developed over 50 years ago. Newer methods of design for ponding have been proposed, but they lack independent verification of their ability to assess the strength of roofs and to provide a sufficient level of reliability. An advanced analysis approach capable of capturing material and geometric nonlinearity, as well as accumulation of water caused by deflection, was developed for roofs consisting of steel beams on stiff supports. The new analysis approach generates data against which the various methods of design for ponding can be benchmarked. These comparisons showed that methods of design based on elastic analysis are capable of accurately capturing the strength of structural steel roofs subjected to ponding load if a reduction factor of 0.8 is applied to the stiffness of the structure. In addition, a reliability analysis using Monte Carlo simulation showed that the methods of design for ponding can achieve a target reliability index consistent with design for other loading conditions. The results provide new insights into the behavior of roofs subjected to ponding loads and enable the use of new design methods for ponding that are more broadly applicable, comprehensive, and consistent with current methods of strength evaluation.
    • Download: (1.166Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength and Reliability of Structural Steel Roofs Subjected to Ponding Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269561
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMark D. Denavit
    contributor authorMichael H. Scott
    date accessioned2022-01-30T22:46:04Z
    date available2022-01-30T22:46:04Z
    date issued2/1/2021
    identifier other(ASCE)ST.1943-541X.0002882.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269561
    description abstractRoof collapses due to ponding instability are among the most frequent structural failures. Although methods of design for other types of instability have evolved and improved with computational advances, the most commonly used method of assessing ponding instability has been updated minimally since it was developed over 50 years ago. Newer methods of design for ponding have been proposed, but they lack independent verification of their ability to assess the strength of roofs and to provide a sufficient level of reliability. An advanced analysis approach capable of capturing material and geometric nonlinearity, as well as accumulation of water caused by deflection, was developed for roofs consisting of steel beams on stiff supports. The new analysis approach generates data against which the various methods of design for ponding can be benchmarked. These comparisons showed that methods of design based on elastic analysis are capable of accurately capturing the strength of structural steel roofs subjected to ponding load if a reduction factor of 0.8 is applied to the stiffness of the structure. In addition, a reliability analysis using Monte Carlo simulation showed that the methods of design for ponding can achieve a target reliability index consistent with design for other loading conditions. The results provide new insights into the behavior of roofs subjected to ponding loads and enable the use of new design methods for ponding that are more broadly applicable, comprehensive, and consistent with current methods of strength evaluation.
    publisherASCE
    titleStrength and Reliability of Structural Steel Roofs Subjected to Ponding Loads
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002882
    journal fristpage04020318
    journal lastpage04020318-10
    page10
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian