YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Damping Ratios of the First Mode for the Seismic Analysis of Buildings

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 001::page 04020300
    Author:
    Cristian Cruz
    ,
    Eduardo Miranda
    DOI: 10.1061/(ASCE)ST.1943-541X.0002873
    Publisher: ASCE
    Abstract: This paper analyzed damping ratios inferred from 1,335 seismic responses recorded in 154 instrumented buildings in California. These values were inferred using a parametric system identification technique in the time domain, and subjected to a series of reliability screening tests to retain only high-quality data. The resulting damping ratios conformed a data set of 1,037 high-quality values inferred exclusively from the seismic response of buildings, a database several times larger than previous studies of damping inferred from seismic response. The data set was analyzed using a linear mixed-effects statistical model to account for the fact that many of the data points were clustered, because they came from damping ratios in the same building shaken by various earthquakes. It was shown that damping decreases with increasing building height, which is the factor that best explained the relatively large variance observed in the data. Contrary to some previous recommendations, it was found that once the variation with height is taken into account, the primary structural building material is not statistically significant in the damping ratio of buildings subjected to earthquakes. However, when including the combined material and lateral resistant system as a factor in the statistical model, an additional 6% of the variance was explained. Results showed that steel buildings with moment-resistant frames have, on average, a slightly higher damping ratio than those with steel braced frames. The amplitude dependency of damping showed that there was no significant correlation between damping ratio and the overall lateral deformation demand in the building as measured by the peak roof drift ratio for amplitudes typically observed during moderate earthquake motions once a minimum level of amplitude is exceeded.
    • Download: (9.550Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Damping Ratios of the First Mode for the Seismic Analysis of Buildings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269555
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorCristian Cruz
    contributor authorEduardo Miranda
    date accessioned2022-01-30T22:45:55Z
    date available2022-01-30T22:45:55Z
    date issued1/1/2021
    identifier other(ASCE)ST.1943-541X.0002873.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269555
    description abstractThis paper analyzed damping ratios inferred from 1,335 seismic responses recorded in 154 instrumented buildings in California. These values were inferred using a parametric system identification technique in the time domain, and subjected to a series of reliability screening tests to retain only high-quality data. The resulting damping ratios conformed a data set of 1,037 high-quality values inferred exclusively from the seismic response of buildings, a database several times larger than previous studies of damping inferred from seismic response. The data set was analyzed using a linear mixed-effects statistical model to account for the fact that many of the data points were clustered, because they came from damping ratios in the same building shaken by various earthquakes. It was shown that damping decreases with increasing building height, which is the factor that best explained the relatively large variance observed in the data. Contrary to some previous recommendations, it was found that once the variation with height is taken into account, the primary structural building material is not statistically significant in the damping ratio of buildings subjected to earthquakes. However, when including the combined material and lateral resistant system as a factor in the statistical model, an additional 6% of the variance was explained. Results showed that steel buildings with moment-resistant frames have, on average, a slightly higher damping ratio than those with steel braced frames. The amplitude dependency of damping showed that there was no significant correlation between damping ratio and the overall lateral deformation demand in the building as measured by the peak roof drift ratio for amplitudes typically observed during moderate earthquake motions once a minimum level of amplitude is exceeded.
    publisherASCE
    titleDamping Ratios of the First Mode for the Seismic Analysis of Buildings
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002873
    journal fristpage04020300
    journal lastpage04020300-14
    page14
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian