YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Glass Fiber–Reinforced Sprayed Concrete: Physical, Mechanical, and Durability Properties

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 001::page 04020396
    Author:
    Nihat Kabay
    ,
    Bahadur Amed
    DOI: 10.1061/(ASCE)MT.1943-5533.0003502
    Publisher: ASCE
    Abstract: The physical, mechanical, and durability properties of glass fiber–reinforced concrete (GFRC) incorporating fly ash, slag, and acrylic polymer with different fiber contents were studied. The use of pozzolanic materials and polymer modified the fresh and physical properties by improving the workability and reducing the water absorption and density of the GFRC mixes. The flexural strength of mixes incorporating fly ash and slag improved with increasing fiber content. The inclusion of acrylic polymer improved the deformation capability of all mixes. Analysis of the fracture surface of the GFRC samples showed the dependence of toughness with the amount of fiber pullout. Wet–dry cycles and exposure to high temperature resulted in significant reductions in mechanical properties in terms of flexural strength and toughness. The normalized toughness values of mixes exposed to 800°C and wet–dry cycles are found to be correlated with each other. Therefore, exposure to high temperature might provide rapid results in predicting long-term GFRC degradation and might be an alternative to wet–dry cycles.
    • Download: (7.207Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Glass Fiber–Reinforced Sprayed Concrete: Physical, Mechanical, and Durability Properties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269409
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorNihat Kabay
    contributor authorBahadur Amed
    date accessioned2022-01-30T22:41:04Z
    date available2022-01-30T22:41:04Z
    date issued1/1/2021
    identifier other(ASCE)MT.1943-5533.0003502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269409
    description abstractThe physical, mechanical, and durability properties of glass fiber–reinforced concrete (GFRC) incorporating fly ash, slag, and acrylic polymer with different fiber contents were studied. The use of pozzolanic materials and polymer modified the fresh and physical properties by improving the workability and reducing the water absorption and density of the GFRC mixes. The flexural strength of mixes incorporating fly ash and slag improved with increasing fiber content. The inclusion of acrylic polymer improved the deformation capability of all mixes. Analysis of the fracture surface of the GFRC samples showed the dependence of toughness with the amount of fiber pullout. Wet–dry cycles and exposure to high temperature resulted in significant reductions in mechanical properties in terms of flexural strength and toughness. The normalized toughness values of mixes exposed to 800°C and wet–dry cycles are found to be correlated with each other. Therefore, exposure to high temperature might provide rapid results in predicting long-term GFRC degradation and might be an alternative to wet–dry cycles.
    publisherASCE
    titleGlass Fiber–Reinforced Sprayed Concrete: Physical, Mechanical, and Durability Properties
    typeJournal Paper
    journal volume33
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003502
    journal fristpage04020396
    journal lastpage04020396-15
    page15
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian