YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lab and Field Study of Physical Sulfate Attack on Concrete Mixtures with Supplementary Cementitious Materials

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 001::page 04020397
    Author:
    Mohammed H. Alyami
    ,
    Hossein Mosavi
    ,
    Raid S. Alrashidi
    ,
    Mohammed A. Almarshoud
    ,
    Christopher C. Ferraro
    ,
    Kyle A. Riding
    DOI: 10.1061/(ASCE)MT.1943-5533.0003500
    Publisher: ASCE
    Abstract: Physical salt attack (PSA) or salt weathering occurs as a result of the crystallization pressures in concrete pores exerted by phase changes of salts that penetrate the concrete. The crystallization pressures cause microcracking of the concrete and mass loss. Different concrete materials have been reported to affect the concrete resistance to PSA. This study examined the effect of incorporating supplementary cementitious materials (SCMs) in concrete on its transport properties and, ultimately, on its resistance to PSA. The effect of SCMs on PSA durability was found to be directly related to their role in altering the pore network. Moreover, results from field specimens were compared with those obtained in the lab. Correlations between the resistance to PSA and formation factor, absorption rate, and chloride migration coefficient were explored in this study. The results showed that slag and silica fume binary mixes had high resistance to PSA, and ternary mixes that included slag, in addition to Class F fly ash, were also resistant to PSA. The study found some correlation between the mass loss in full submersion tests with respect to their formation factors and transport properties. The field specimens were evaluated over a 1-year period, and the results showed PSA manifestation. It was found that the measured mass loss in PSA full submersion lab tests correlated well with the concrete formation factor. It was also found that the damage in some binary fly-ash specimens in the field and partially submerged lab tests was greater than expected based on the results in the fully submerged test.
    • Download: (2.154Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lab and Field Study of Physical Sulfate Attack on Concrete Mixtures with Supplementary Cementitious Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269408
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMohammed H. Alyami
    contributor authorHossein Mosavi
    contributor authorRaid S. Alrashidi
    contributor authorMohammed A. Almarshoud
    contributor authorChristopher C. Ferraro
    contributor authorKyle A. Riding
    date accessioned2022-01-30T22:40:59Z
    date available2022-01-30T22:40:59Z
    date issued1/1/2021
    identifier other(ASCE)MT.1943-5533.0003500.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269408
    description abstractPhysical salt attack (PSA) or salt weathering occurs as a result of the crystallization pressures in concrete pores exerted by phase changes of salts that penetrate the concrete. The crystallization pressures cause microcracking of the concrete and mass loss. Different concrete materials have been reported to affect the concrete resistance to PSA. This study examined the effect of incorporating supplementary cementitious materials (SCMs) in concrete on its transport properties and, ultimately, on its resistance to PSA. The effect of SCMs on PSA durability was found to be directly related to their role in altering the pore network. Moreover, results from field specimens were compared with those obtained in the lab. Correlations between the resistance to PSA and formation factor, absorption rate, and chloride migration coefficient were explored in this study. The results showed that slag and silica fume binary mixes had high resistance to PSA, and ternary mixes that included slag, in addition to Class F fly ash, were also resistant to PSA. The study found some correlation between the mass loss in full submersion tests with respect to their formation factors and transport properties. The field specimens were evaluated over a 1-year period, and the results showed PSA manifestation. It was found that the measured mass loss in PSA full submersion lab tests correlated well with the concrete formation factor. It was also found that the damage in some binary fly-ash specimens in the field and partially submerged lab tests was greater than expected based on the results in the fully submerged test.
    publisherASCE
    titleLab and Field Study of Physical Sulfate Attack on Concrete Mixtures with Supplementary Cementitious Materials
    typeJournal Paper
    journal volume33
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003500
    journal fristpage04020397
    journal lastpage04020397-14
    page14
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian