YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robust Adaptive Iterative Learning Control for High-Precision Attitude Tracking of Spacecraft

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 001::page 04020108
    Author:
    Qijia Yao
    DOI: 10.1061/(ASCE)AS.1943-5525.0001230
    Publisher: ASCE
    Abstract: In this paper, a robust adaptive iterative learning control (ILC) scheme is developed for the high-precision attitude tracking control of spacecraft in the presence of parametric uncertainties and external disturbances. The proposed robust adaptive ILC law consists of three parts, i.e., the classic proportional-derivative (PD) feedback control term, the PD-type feedforward learning term, and the robust term. The adaptive updating laws are designed for the gain matrices of both the classic PD feedback control term and the PD-type feedforward learning term. The asymptotic stability of the whole closed-loop system is proved through the Lyapunov function–based convergence analysis. The proposed robust adaptive ILC scheme can not only compensate for the parametric uncertainties and repetitive disturbance, but also handle the nonrepetitive disturbance owing to the robust control concept. Moreover, the proposed robust adaptive ILC scheme can achieve the fast convergence speed benefiting from the adaptive technique. Numerical simulations illustrate the effectiveness and superiority of the proposed ILC scheme.
    • Download: (208.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robust Adaptive Iterative Learning Control for High-Precision Attitude Tracking of Spacecraft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269349
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorQijia Yao
    date accessioned2022-01-30T22:39:08Z
    date available2022-01-30T22:39:08Z
    date issued1/1/2021
    identifier other(ASCE)AS.1943-5525.0001230.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269349
    description abstractIn this paper, a robust adaptive iterative learning control (ILC) scheme is developed for the high-precision attitude tracking control of spacecraft in the presence of parametric uncertainties and external disturbances. The proposed robust adaptive ILC law consists of three parts, i.e., the classic proportional-derivative (PD) feedback control term, the PD-type feedforward learning term, and the robust term. The adaptive updating laws are designed for the gain matrices of both the classic PD feedback control term and the PD-type feedforward learning term. The asymptotic stability of the whole closed-loop system is proved through the Lyapunov function–based convergence analysis. The proposed robust adaptive ILC scheme can not only compensate for the parametric uncertainties and repetitive disturbance, but also handle the nonrepetitive disturbance owing to the robust control concept. Moreover, the proposed robust adaptive ILC scheme can achieve the fast convergence speed benefiting from the adaptive technique. Numerical simulations illustrate the effectiveness and superiority of the proposed ILC scheme.
    publisherASCE
    titleRobust Adaptive Iterative Learning Control for High-Precision Attitude Tracking of Spacecraft
    typeJournal Paper
    journal volume34
    journal issue1
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001230
    journal fristpage04020108
    journal lastpage04020108-1
    page1
    treeJournal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian