YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Exhaust Gas Recirculation under Fueling Rate or Air/Fuel Ratio–Controlled Strategies on Diesel Engine Performance and Emissions by Two-Zone Combustion Modeling

    Source: Journal of Energy Engineering:;2021:;Volume ( 147 ):;issue: 001::page 04020079
    Author:
    Dimitrios C. Rakopoulos
    DOI: 10.1061/(ASCE)EY.1943-7897.0000729
    Publisher: ASCE
    Abstract: The effects of exhaust gas recirculation (EGR) on combustion, performance, and exhaust emissions in direct injection (DI) diesel engines are assessed in a primarily numerical study under the influence of various EGR rates using two different strategies, that is, under constant engine fueling rate (FR) or air/fuel ratio (AFR). The analysis uses an in-house, comprehensive, two-zone diesel combustion model, which separates the in-cylinder working medium into an unburned zone (air, or air plus EGR gas) and a burned one into which fuel is injected from the injector-nozzle holes that are burned with the entrained gas mass from the unburned zone. The validity of the model computations is appraised positively compared to relevant experimental data, such as diagrams of in-cylinder pressures and temperatures, heat release rate (HRR), and nitric oxide (NO) and soot (smoke) emissions, with tests acquired in the laboratory on a standard, experimental, monocylinder, DI, naturally-aspirated (N/A) diesel engine at various operating conditions. A perplexity occurs in the literature of using either constant FR or AFR in the EGR strategy (sometimes overlooked), which can lead to an erroneous interpretation and comparison of the obtained results. This is delineated in this study by using its numerical results that supply insight into the local combustion and emissions formation mechanisms, identifying the important parameters in each case that affect the engine behavior under various operating conditions, in the light of the existing NO–smoke trade-off and the impact on engine power-output and efficiency. The results can be useful for optimizing the emissions and efficiency in each case, and assist with their implications for better designing of the related electronic control unit (ECU) in diesel engines bearing EGR systems.
    • Download: (2.849Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Exhaust Gas Recirculation under Fueling Rate or Air/Fuel Ratio–Controlled Strategies on Diesel Engine Performance and Emissions by Two-Zone Combustion Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269234
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorDimitrios C. Rakopoulos
    date accessioned2022-01-30T22:35:45Z
    date available2022-01-30T22:35:45Z
    date issued2/1/2021
    identifier other(ASCE)EY.1943-7897.0000729.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269234
    description abstractThe effects of exhaust gas recirculation (EGR) on combustion, performance, and exhaust emissions in direct injection (DI) diesel engines are assessed in a primarily numerical study under the influence of various EGR rates using two different strategies, that is, under constant engine fueling rate (FR) or air/fuel ratio (AFR). The analysis uses an in-house, comprehensive, two-zone diesel combustion model, which separates the in-cylinder working medium into an unburned zone (air, or air plus EGR gas) and a burned one into which fuel is injected from the injector-nozzle holes that are burned with the entrained gas mass from the unburned zone. The validity of the model computations is appraised positively compared to relevant experimental data, such as diagrams of in-cylinder pressures and temperatures, heat release rate (HRR), and nitric oxide (NO) and soot (smoke) emissions, with tests acquired in the laboratory on a standard, experimental, monocylinder, DI, naturally-aspirated (N/A) diesel engine at various operating conditions. A perplexity occurs in the literature of using either constant FR or AFR in the EGR strategy (sometimes overlooked), which can lead to an erroneous interpretation and comparison of the obtained results. This is delineated in this study by using its numerical results that supply insight into the local combustion and emissions formation mechanisms, identifying the important parameters in each case that affect the engine behavior under various operating conditions, in the light of the existing NO–smoke trade-off and the impact on engine power-output and efficiency. The results can be useful for optimizing the emissions and efficiency in each case, and assist with their implications for better designing of the related electronic control unit (ECU) in diesel engines bearing EGR systems.
    publisherASCE
    titleEffects of Exhaust Gas Recirculation under Fueling Rate or Air/Fuel Ratio–Controlled Strategies on Diesel Engine Performance and Emissions by Two-Zone Combustion Modeling
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000729
    journal fristpage04020079
    journal lastpage04020079-13
    page13
    treeJournal of Energy Engineering:;2021:;Volume ( 147 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian