YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solution of the Richards Equation under Gravity-Driven Infiltration and Constant Rainfall Intensity

    Source: Journal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 007
    Author:
    Giorgio Baiamonte
    DOI: 10.1061/(ASCE)HE.1943-5584.0001933
    Publisher: ASCE
    Abstract: In the field of soil hydrology, the Richards equation is commonly used to model water flow in unsaturated soils. The high nonlinearity of the Richards equation makes it very challenging to solve analytically for situations that are meaningful in practical applications. In this paper, an exact and simple analytical solution of the Richards equation under gravity-driven infiltration and constant rainfall intensity is derived. First, the solution is presented under Torricelli’s law, which mimics the soil hydraulic conductivity function and describes the emptying or filling process of a nonlinear water reservoir. Then, following a similar approach, the solution is extended to the Brooks and Corey soil hydraulic conductivity function, which is generally considered to well describe soil hydrological characteristics. The approach followed in this study is a simple hydraulic approach; therefore, the derived solutions are not affected by uncertainty as long as the hypothesis of the gravity-driven infiltration is satisfied for the selected soils. A comparison with the solution numerically derived by the Richards equation for which the gravity-driven assumption is relaxed is performed and discussed. Interestingly, the comparison indicated that the suggested solution delimits the solutions domain of the Richards equation.
    • Download: (2.546Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solution of the Richards Equation under Gravity-Driven Infiltration and Constant Rainfall Intensity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4269034
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorGiorgio Baiamonte
    date accessioned2022-01-30T21:54:22Z
    date available2022-01-30T21:54:22Z
    date issued7/1/2020 12:00:00 AM
    identifier other%28ASCE%29HE.1943-5584.0001933.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4269034
    description abstractIn the field of soil hydrology, the Richards equation is commonly used to model water flow in unsaturated soils. The high nonlinearity of the Richards equation makes it very challenging to solve analytically for situations that are meaningful in practical applications. In this paper, an exact and simple analytical solution of the Richards equation under gravity-driven infiltration and constant rainfall intensity is derived. First, the solution is presented under Torricelli’s law, which mimics the soil hydraulic conductivity function and describes the emptying or filling process of a nonlinear water reservoir. Then, following a similar approach, the solution is extended to the Brooks and Corey soil hydraulic conductivity function, which is generally considered to well describe soil hydrological characteristics. The approach followed in this study is a simple hydraulic approach; therefore, the derived solutions are not affected by uncertainty as long as the hypothesis of the gravity-driven infiltration is satisfied for the selected soils. A comparison with the solution numerically derived by the Richards equation for which the gravity-driven assumption is relaxed is performed and discussed. Interestingly, the comparison indicated that the suggested solution delimits the solutions domain of the Richards equation.
    publisherASCE
    titleAnalytical Solution of the Richards Equation under Gravity-Driven Infiltration and Constant Rainfall Intensity
    typeJournal Paper
    journal volume25
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001933
    page15
    treeJournal of Hydrologic Engineering:;2020:;Volume ( 025 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian